Projekter pr. år
Abstract
Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2 glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 192 |
Tidsskrift | npj Computational Materials |
Vol/bind | 8 |
Udgave nummer | 1 |
Antal sider | 9 |
ISSN | 2057-3960 |
DOI | |
Status | Udgivet - 9 sep. 2022 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Predicting glass structure by physics-informed machine learning'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Tailoring the Structure of Disordered Solids using Statistical Mechanics
Smedskjær, M. M. & Bødker, M. S.
01/09/2017 → 31/08/2021
Projekter: Projekt › Forskning
Presse/Medier
-
Predicting glass structure by physics-informed machine learning
Tao Du, Morten Mattrup Smedskjær & Mikkel Sandfeld Bødker
09/09/2022
1 element af Mediedækning
Presse/medie