Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy

Cecilie Hermansen*, Trine Norgaard, Lis Wollesen de Jonge, Per Moldrup, Karin Müller, Maria Knadel

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

17 Citationer (Scopus)
52 Downloads (Pure)

Abstract

Glyphosate [N-(phosphonomethyl) glycine] is the active ingredient in Roundup, which is the most used herbicide around the world. It is a non-selective herbicide with carboxyl, amino, and phosphonate functional groups, and it has a strong affinity to the soil mineral fraction. Sorption plays a major role for the fate and transport of glyphosate in the environment. The sorption coefficient (Kd) of glyphosate, and hence its mobility, varies greatly among different soil types. Determining Kd is laborious and requires the use of wet chemistry. In this study, we aimed to estimate Kd using basic soil properties, and visible near-infrared spectroscopy (vis–NIRS). The latter method is fast, requires no chemicals, and several soil properties can be estimated from the same spectrum. The data set included 68 topsoil samples collected across the South Island of New Zealand, with clay and organic carbon (OC) contents ranging from 0.001 to 0.520 kg kg−1 and 0.021 to 0.217 kg kg−1, respectively. The Kd was determined with batch equilibration sorption experiments and ranged from 13 to 3810 L kg−1. The visible near-infrared spectra were obtained from 400 to 2500 nm. Multiple linear regression was used to correlate Kd to oxalate extractable aluminium and phosphorous and pH, which resulted in an R2 of 0.89 and an RMSE of 259.59 L kg−1. Further, interval partial least squares regression with ten-fold cross-validation was used to predict Kd by vis–NIRS, and an R2 of 0.93 and an RMSECV of 207.58 L kg−1 were obtained. Thus, these results show that both basic soil properties and vis–NIRS can predict the variation in Kd across these samples with high accuracy and hence, that glyphosate sorption to a soil can be determined with vis–NIRS.

OriginalsprogEngelsk
Artikelnummer114009
TidsskriftGeoderma
Vol/bind360
Udgave nummer15 February 2020
ISSN0016-7061
DOI
StatusUdgivet - 15 feb. 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy'. Sammen danner de et unikt fingeraftryk.

Citationsformater