TY - JOUR
T1 - Prediction of gait kinetics using Markerless-driven musculoskeletal modeling
AU - Ripic, Zachary
AU - Theodorakos, Ilias
AU - Andersen, Michael S.
AU - Signorile, Joseph F.
AU - Best, Thomas M.
AU - Jacobs, Kevin A.
AU - Eltoukhy, Moataz
N1 - Copyright © 2023 Elsevier Ltd. All rights reserved.
PY - 2023/8
Y1 - 2023/8
N2 - Video-based motion analysis systems are emerging in the biomechanics research community, yet there is limited exploration of kinetics prediction using RGB-markerless kinematics and musculoskeletal modeling. This project aimed to provide ground reaction force (GRF) and ground reaction moment (GRM) predictions during over-ground gait by introducing RGB-markerless kinematics into a musculoskeletal modeling framework. Full-body markerless kinematic inputs and musculoskeletal modeling were used to obtain GRF and GRM predictions which were compared to measured force plate values. The markerless-driven predictions yielded average root mean-squared error (RMSE) in the stance phase of 0.035 ± 0.009 N∙BW−1, 0.070 ± 0.014 N∙BW−1, and 0.155 ± 0.041 N∙BW−1 in the mediolateral (ML), anteroposterior (AP), and vertical (V) GRFs. This was accompanied by moderate to high correlations and interclass correlation coefficients (ICC) indicating moderate to good agreement between measured and predicted values (95% Confidence Inervals: ML = [0.479, 0.717], AP = [0.714, 0.856], V = [0.803, 0.905]). For ground reaction moments (GRM), average RMSE was 0.029 ± 0.013 Nm∙BWH-1, 0.014 ± 0.005 Nm∙BWH-1, and 0.005 ± 0.002 Nm∙BWH-1 in the sagittal, frontal, and transverse planes. Pearson correlations and ICCs indicated poor agreement between systems for GRMs (95% Confidence Intervals: Sagittal = [0.314, 0.608], Frontal = [0.006, 0.373], Transverse = [0.269, 0.570]). Currently, RMSE is larger than target thresholds set from studies using Kinect, inertial, or marker-based kinematic drivers; but methodological considerations highlighted in this work may help guide follow-up iterations. At this point, further use in research or clinical practice is cautioned until methodological considerations are addressed, although results are promising at this point.
AB - Video-based motion analysis systems are emerging in the biomechanics research community, yet there is limited exploration of kinetics prediction using RGB-markerless kinematics and musculoskeletal modeling. This project aimed to provide ground reaction force (GRF) and ground reaction moment (GRM) predictions during over-ground gait by introducing RGB-markerless kinematics into a musculoskeletal modeling framework. Full-body markerless kinematic inputs and musculoskeletal modeling were used to obtain GRF and GRM predictions which were compared to measured force plate values. The markerless-driven predictions yielded average root mean-squared error (RMSE) in the stance phase of 0.035 ± 0.009 N∙BW−1, 0.070 ± 0.014 N∙BW−1, and 0.155 ± 0.041 N∙BW−1 in the mediolateral (ML), anteroposterior (AP), and vertical (V) GRFs. This was accompanied by moderate to high correlations and interclass correlation coefficients (ICC) indicating moderate to good agreement between measured and predicted values (95% Confidence Inervals: ML = [0.479, 0.717], AP = [0.714, 0.856], V = [0.803, 0.905]). For ground reaction moments (GRM), average RMSE was 0.029 ± 0.013 Nm∙BWH-1, 0.014 ± 0.005 Nm∙BWH-1, and 0.005 ± 0.002 Nm∙BWH-1 in the sagittal, frontal, and transverse planes. Pearson correlations and ICCs indicated poor agreement between systems for GRMs (95% Confidence Intervals: Sagittal = [0.314, 0.608], Frontal = [0.006, 0.373], Transverse = [0.269, 0.570]). Currently, RMSE is larger than target thresholds set from studies using Kinect, inertial, or marker-based kinematic drivers; but methodological considerations highlighted in this work may help guide follow-up iterations. At this point, further use in research or clinical practice is cautioned until methodological considerations are addressed, although results are promising at this point.
KW - Artificial intelligence
KW - Biomechanics
KW - Ground reaction force prediction
KW - Markerless motion capture
KW - Musculoskeletal modeling
UR - http://www.scopus.com/inward/record.url?scp=85164303365&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2023.111712
DO - 10.1016/j.jbiomech.2023.111712
M3 - Journal article
C2 - 37421911
AN - SCOPUS:85164303365
SN - 0021-9290
VL - 157
JO - Journal of Biomechanics
JF - Journal of Biomechanics
M1 - 111712
ER -