Price Prediction of Digital Currencies using Machine Learning

Ashutosh Dhar Dwivedi*, Subhayu Dutta, Subhrangshu Adhikary, Jens Myrup Pedersen

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citationer (Scopus)

Abstract

Cryptocurrencies have gained immense significance and popularity in recent times. With thousands of digital currencies available, selecting the right one can be challenging for users. In the financial sector, accurately predicting future prices is crucial for profitable investments in digital currencies. However, price prediction in this realm poses unique challenges, as it lacks physical goods or services as the basis, unlike stock prices. Machine learning emerges as a pivotal tool for addressing this challenge and plays a vital role in price prediction. This research analyzes five prominent currencies - Monero, Bitcoin, Ethereum, IOTA, and Zcash - employing five models: SVR, LRG, Huber, RANSAC, MLP, and AdaBoost. The experimental results demonstrate promising outcomes, showcasing the ability to predict digital currency prices with an impressive R2 score of 1.0 for specific machine learning algorithms. This advancement opens new avenues for informed decision-making and profitable ventures in the dynamic world of digital currencies.

OriginalsprogEngelsk
Titel2023 IEEE 10th International Conference on Data Science and Advanced Analytics, DSAA 2023 - Proceedings
RedaktørerYannis Manolopoulos, Zhi-Hua Zhou
Antal sider9
ForlagIEEE Signal Processing Society
Publikationsdato2023
Artikelnummer10302532
ISBN (Trykt)979-8-3503-4504-9
ISBN (Elektronisk)979-8-3503-4503-2
DOI
StatusUdgivet - 2023
Begivenhed10th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2023 - Thessaloniki, Grækenland
Varighed: 9 okt. 202313 okt. 2023

Konference

Konference10th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2023
Land/OmrådeGrækenland
ByThessaloniki
Periode09/10/202313/10/2023

Bibliografisk note

Publisher Copyright:
© 2023 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Price Prediction of Digital Currencies using Machine Learning'. Sammen danner de et unikt fingeraftryk.

Citationsformater