Private Aggregation with Application to Distributed Optimization

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstrakt

The paper presents a fully distributed private aggregation protocol that can be employed in dynamical networks where communication is only assumed on a neighbor-to-neighbor basis. The novelty of the scheme is its low overhead in communication and computation due to a pre-processing phase that can be executed even before the participants know their input to aggregation. Moreover, the scheme is resilient to node drop-outs, and it is defined without introducing any trusted or untrusted third parties. We prove the privacy of the scheme itself and subsequently, we discuss the privacy leakage caused by the output of the scheme. Finally, we discuss implementation of the proposed protocol to solve distributed optimization problems using two versions of the alternating direction method of multipliers (ADMM).

OriginalsprogEngelsk
Titel2021 American Control Conference (ACC)
Antal sider6
ForlagIEEE
Publikationsdato28 maj 2021
Sider3501-3506
Artikelnummer9483260
ISBN (Trykt)978-1-7281-9704-3
ISBN (Elektronisk)978-1-6654-4197-1
DOI
StatusUdgivet - 28 maj 2021
Begivenhed2021 American Control Conference (ACC) - New Orleans, USA
Varighed: 25 maj 202128 maj 2021

Konference

Konference2021 American Control Conference (ACC)
Land/OmrådeUSA
ByNew Orleans
Periode25/05/202128/05/2021
NavnAmerican Control Conference
ISSN0743-1619

Fingeraftryk

Dyk ned i forskningsemnerne om 'Private Aggregation with Application to Distributed Optimization'. Sammen danner de et unikt fingeraftryk.

Citationsformater