PSpice Modeling Platform for SiC Power MOSFET Modules with Extensive Experimental Validation

Lorenzo Ceccarelli, Francesco Iannuzzo, Muhammad Nawaz

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

15 Citationer (Scopus)
1849 Downloads (Pure)

Abstract

The aim of this work is to present a PSpice implementation for a well-established and compact physics-based SiC MOSFET model, including a fast, experimental-based parameter extraction procedure in a MATLAB GUI environment. The model, originally meant for single-die devices, has been used to simulate the performance of high current rating (above 100 A), multi-chip SiC MOSFET modules both for static and switching behavior. Therefore, the simulation results have been validated experimentally in a wide range of operating conditions, including high temperatures, gate resistance and stray elements. The whole process has been repeated for three different modules with voltage rating of 1.2 kV and 1.7 kV, manufactured by three different companies. Lastly, a parallel connection of two modules of the same type has been performed in order to observe the unbalancing and mismatches experimentally, and to verify the model effectiveness in such challenging topologies.
OriginalsprogEngelsk
TitelProceedings of 8th IEEE Energy Conversion Congress and Exposition, 2016: ECCE 2016
Antal sider8
ForlagIEEE Press
Publikationsdatosep. 2016
ISBN (Elektronisk)978-1-5090-0737-0
DOI
StatusUdgivet - sep. 2016
Begivenhed 8th Annual IEEE Energy Conversion Congress & Exposition: ECCE 2016 - Milwaukee, WI, USA
Varighed: 18 sep. 201622 sep. 2016
http://www.ieee-ecce.org/

Konference

Konference 8th Annual IEEE Energy Conversion Congress & Exposition
Land/OmrådeUSA
ByMilwaukee, WI
Periode18/09/201622/09/2016
SponsorIEEE, IEEE Industry Applications Society (IAS), IEEE Power Electronics and Industry Applications Societies (PELS)
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'PSpice Modeling Platform for SiC Power MOSFET Modules with Extensive Experimental Validation'. Sammen danner de et unikt fingeraftryk.

Citationsformater