Query and Update Efficient B+-Tree Based Indexing of Moving Objects

Christian Søndergaard Jensen, Dan Lin, Beng Chin Ooi

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskning

283 Citationer (Scopus)

Abstract

A number of emerging applications of data management technology involve the monitoring and querying of large quantities of continuous variables, e.g., the positions of mobile service users, termed moving objects. In such applications, large quantities of state samples obtained via sensors are streamed to a database. Indexes for moving objects must support queries efficiently, but must also support frequent updates. Indexes based on minimum bounding regions (MBRs) such as the R-tree exhibit high concurrency overheads during node splitting, and each individual update is known to be quite costly. This motivates the design of a solution that enables the B+-tree to manage moving objects. We represent moving-object locations as vectors that are timestamped based on their update time. By applying a novel linearization technique to these values, it is possible to index the resulting values using a single B+-tree that partitions values according to their timestamp and otherwise preserves spatial proximity. We develop algorithms for range and k nearest neighbor queries, as well as continuous queries. The proposal can be grafted into existing database systems cost effectively. An extensive experimental study explores the performance characteristics of the proposal and also shows that it is capable of substantially outperforming the R-tree based TPR-tree for both single and concurrent access scenarios.
OriginalsprogEngelsk
TitelProceedings of the Thirtieth International Conference on Very Large Data Bases
Antal sider12
Publikationsdato2004
Sider768-779
StatusUdgivet - 2004
BegivenhedVLDB 2004 - Toronto, Canada
Varighed: 9 aug. 20043 sep. 2004
Konferencens nummer: 30

Konference

KonferenceVLDB 2004
Nummer30
Land/OmrådeCanada
ByToronto
Periode09/08/200403/09/2004

Fingeraftryk

Dyk ned i forskningsemnerne om 'Query and Update Efficient B+-Tree Based Indexing of Moving Objects'. Sammen danner de et unikt fingeraftryk.

Citationsformater