TY - JOUR
T1 - Radiotracers for Bone Marrow Infection Imaging
AU - Jødal, Lars
AU - Afzelius, Pia
AU - Alstrup, Aage Kristian Olsen
AU - Jensen, Svend Borup
PY - 2021/5/25
Y1 - 2021/5/25
N2 - INTRODUCTION: Radiotracers are widely used in medical imaging, using techniques of gamma-camera imaging (scintigraphy and SPECT) or positron emission tomography (PET). In bone marrow infection, there is no single routine test available that can detect infection with sufficiently high diagnostic accuracy. Here, we review radiotracers used for imaging of bone marrow infection, also known as osteomyelitis, with a focus on why these molecules are relevant for the task, based on their physiological uptake mechanisms. The review comprises [67Ga]Ga-citrate, radiolabelled leukocytes, radiolabelled nanocolloids (bone marrow) and radiolabelled phosphonates (bone structure), and [18F]FDG as established radiotracers for bone marrow infection imaging. Tracers that are under development or testing for this purpose include [68Ga]Ga-citrate, [18F]FDG, [18F]FDS and other non-glucose sugar analogues, [15O]water, [11C]methionine, [11C]donepezil, [99mTc]Tc-IL-8, [68Ga]Ga-Siglec-9, phage-display selected peptides, and the antimicrobial peptide [99mTc]Tc-UBI29-41 or [68Ga]Ga-NOTA-UBI29-41.CONCLUSION: Molecular radiotracers allow studies of physiological processes such as infection. None of the reviewed molecules are ideal for the imaging of infections, whether bone marrow or otherwise, but each can give information about a separate aspect such as physiology or biochemistry. Knowledge of uptake mechanisms, pitfalls, and challenges is useful in both the use and development of medically relevant radioactive tracers.
AB - INTRODUCTION: Radiotracers are widely used in medical imaging, using techniques of gamma-camera imaging (scintigraphy and SPECT) or positron emission tomography (PET). In bone marrow infection, there is no single routine test available that can detect infection with sufficiently high diagnostic accuracy. Here, we review radiotracers used for imaging of bone marrow infection, also known as osteomyelitis, with a focus on why these molecules are relevant for the task, based on their physiological uptake mechanisms. The review comprises [67Ga]Ga-citrate, radiolabelled leukocytes, radiolabelled nanocolloids (bone marrow) and radiolabelled phosphonates (bone structure), and [18F]FDG as established radiotracers for bone marrow infection imaging. Tracers that are under development or testing for this purpose include [68Ga]Ga-citrate, [18F]FDG, [18F]FDS and other non-glucose sugar analogues, [15O]water, [11C]methionine, [11C]donepezil, [99mTc]Tc-IL-8, [68Ga]Ga-Siglec-9, phage-display selected peptides, and the antimicrobial peptide [99mTc]Tc-UBI29-41 or [68Ga]Ga-NOTA-UBI29-41.CONCLUSION: Molecular radiotracers allow studies of physiological processes such as infection. None of the reviewed molecules are ideal for the imaging of infections, whether bone marrow or otherwise, but each can give information about a separate aspect such as physiology or biochemistry. Knowledge of uptake mechanisms, pitfalls, and challenges is useful in both the use and development of medically relevant radioactive tracers.
KW - Bone Marrow/pathology
KW - Humans
KW - Positron-Emission Tomography/methods
KW - Radiopharmaceuticals/chemistry
KW - Tomography, Emission-Computed, Single-Photon/methods
U2 - 10.3390/molecules26113159
DO - 10.3390/molecules26113159
M3 - Review article
C2 - 34070537
SN - 1420-3049
VL - 26
JO - Molecules
JF - Molecules
IS - 11
M1 - 3159
ER -