Rational points on cubic surfaces and AG codes from the Norm–Trace curve

Matteo Bonini, Massimiliano Sala, Lara Vicino*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citationer (Scopus)
44 Downloads (Pure)

Abstract

In this paper, we derive general bounds for the number of rational points on a cubic surface defined over Fq, which constitute an extension of a result due to Weil. Exploiting these bounds, we are able to give a complete characterization of the intersections between the Norm–Trace curve over Fq3 and the curves of the form y= ax3+ bx2+ cx+ d, generalizing a previous result by Bonini and Sala and providing more detailed information about the weight spectrum of one-point AG codes arising from such curve.

OriginalsprogEngelsk
TidsskriftAnnali di Matematica Pura ed Applicata
Vol/bind202
Sider (fra-til)185-208
Antal sider24
ISSN0373-3114
DOI
StatusUdgivet - feb. 2023

Bibliografisk note

Publisher Copyright:
© 2022, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Rational points on cubic surfaces and AG codes from the Norm–Trace curve'. Sammen danner de et unikt fingeraftryk.

Citationsformater