Reactions of pyrrole, imidazole, and pyrazole with ozone: Kinetics and mechanisms

Agnes Tekle-Röttering, Sungeun Lim, Peter Rudolf Tentscher, Erika Reisz, Holger Lutze, Mohammad Sajjad Abdighahroudi, Sarah Willach, Winfried Schmidt, Daniel Rentsch, Christa S. McArdell, Thorsten C. Schmidt, Urs von Gunten

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as model compounds. Reaction kinetics and ozonation products were determined by kinetic and analytical methods including NMR, LC-HRMS/MS, HPLC-UV, and IC-MS. Analyses of reactive oxygen species ( 1O 2, OH, H 2O 2), quantum chemical computations (Gibbs energies), and kinetic simulations were used to further support the proposed reaction mechanisms. The species-specific second-order rate constants for the reactions of ozone with pyrrole and imidazole were (1.4 ± 1.1) × 10 6 M -1 s -1 and (2.3 ± 0.1) × 10 5 M -1 s -1, respectively. Pyrazole reacted more slowly with ozone at pH 7 (k app = (5.6 ± 0.9) × 10 1 M -1 s -1). Maleimide was an identified product of pyrrole with a 34% yield. Together with other products, formate, formamide, and glyoxal, C and N mass balances of ∼50% were achieved. Imidazole reacted with ozone to cyanate, formamide, and formate (∼100% yields per transformed imidazole, respectively) with a closed mass balance. For pyrazole, a high ozone:pyrazole molar stoichiometry of 4.6 was found, suggesting that the transformation products contributed to the over-stoichiometric consumption of ozone (e.g., hydroxypyrazoles). Glyoxal and formate were the only identified transformation products (C mass balance of 65%). Overall, the identified major products are suspected to hydrolyze and/or be biodegraded and thereby abated by a biological post-treatment typically following ozonation. However, as substructures of more complex compounds (e.g., micropollutants), they might be more persistent during biological post-treatment.

TidsskriftEnvironmental Science: Water Research and Technology
Udgave nummer4
Sider (fra-til)976-992
Antal sider17
StatusUdgivet - 31 jan. 2020

Fingeraftryk Dyk ned i forskningsemnerne om 'Reactions of pyrrole, imidazole, and pyrazole with ozone: Kinetics and mechanisms'. Sammen danner de et unikt fingeraftryk.