Projekter pr. år
Abstrakt
The application of machine learning techniques inthe setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCN architectures by up to 21–40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks
Originalsprog | Engelsk |
---|---|
Tidsskrift | IEEE Transactions on Intelligent Transportation Systems |
Sider (fra-til) | 1-12 |
Antal sider | 12 |
ISSN | 1524-9050 |
DOI | |
Status | Udgivet - 14 aug. 2020 |
Fingeraftryk Dyk ned i forskningsemnerne om 'Relational Fusion Networks: Graph Convolutional Networks for Road Networks'. Sammen danner de et unikt fingeraftryk.
Projekter
- 1 Afsluttet
-
DiCyPS: Center for Data-Intensive Cyber-Physical Systems
01/01/2015 → 31/12/2020
Projekter: Projekt › Forskning
Publikation
- 2 Konferenceartikel i proceeding
-
Scalable Unsupervised Multi-Criteria Trajectory Segmentation and Driving Preference Mining
Barth, F., Funke, S., Skovgaard Jepsen, T. & Proissl, C., 3 nov. 2020, BIGSPATIAL '20: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. Chandola, V., Vatsavai, R. R. & Shashidharan, A. (red.). Association for Computing Machinery, s. 1-10 10 s. 6Publikation: Bidrag til bog/antologi/rapport/konference proceeding › Konferenceartikel i proceeding › Forskning › peer review
Fil -
Graph Convolutional Networks for Road Networks
Skovgaard Jepsen, T., Jensen, C. S. & Nielsen, T. D., 5 nov. 2019, Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Banaei-Kashani, F., Trajcevski, G., Guting, R. H., Kulik, L. & Newsam, S. (red.). Association for Computing Machinery, s. 460-463 4 s.Publikation: Bidrag til bog/antologi/rapport/konference proceeding › Konferenceartikel i proceeding › Forskning › peer review
Åben adgangFil2 Citationer (Scopus)162 Downloads (Pure)