REPOSE: Distributed Top-k Trajectory Similarity Search with Local Reference Point Tries

Bolong Zheng, Lianggui Weng, Xi Zhao, Kai Zeng, Xiaofang Zhou, Christian S. Jensen

Publikation: Working paper/PreprintWorking paperForskning

Abstract

Trajectory similarity computation is a fundamental component in a variety of real-world applications, such as ridesharing, road planning, and transportation optimization. Recent advances in mobile devices have enabled an unprecedented increase in the amount of available trajectory data such that efficient query processing can no longer be supported by a single machine. As a result, means of performing distributed in-memory trajectory similarity search are called for. However, existing distributed proposals suffer from either computing resource waste or are unable to support the range of similarity measures that are being used. We propose a distributed in-memory management framework called REPOSE for processing top-k trajectory similarity queries on Spark. We develop a reference point trie (RP-Trie) index to organize trajectory data for local search. In addition, we design a novel heterogeneous global partitioning strategy to eliminate load imbalance in distributed settings. We report on extensive experiments with real-world data that offer insight into the performance of the solution, and show that the solution is capable of outperforming the state-of-the-art proposals.
OriginalsprogEngelsk
Vol/bindabs/2101.08929
StatusUdgivet - 2021

Bibliografisk note

DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.

Fingeraftryk

Dyk ned i forskningsemnerne om 'REPOSE: Distributed Top-k Trajectory Similarity Search with Local Reference Point Tries'. Sammen danner de et unikt fingeraftryk.

Citationsformater