Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

María Alcaide, Stavros Papaioannou, Andrew Taylor, Ladislav Fekete, Leonid Gurevich, Vladimir Zachar, Cristian Pablo Pennisi

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

14 Citationer (Scopus)

Abstract

Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.

OriginalsprogEngelsk
Artikelnummer90
TidsskriftJournal of Materials Science: Materials in Medicine
Vol/bind27
Udgave nummer5
Antal sider12
ISSN0957-4530
DOI
StatusUdgivet - 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping'. Sammen danner de et unikt fingeraftryk.

Citationsformater