TY - JOUR
T1 - Sex differences in microvascular function across lower leg muscles in humans
AU - Molbo, Lars
AU - Hansen, Rasmus Kopp
AU - Østergaard, Lasse Riis
AU - Frøkjær, Jens Brøndum
AU - Larsen, Ryan Godsk
N1 - Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
PY - 2022/1
Y1 - 2022/1
N2 - Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
AB - Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
KW - Blood oxygen level dependent (BOLD)
KW - Microvascular reactivity
KW - Occlusion-reperfusion
KW - Skeletal muscle
UR - http://www.scopus.com/inward/record.url?scp=85119301952&partnerID=8YFLogxK
U2 - 10.1016/j.mvr.2021.104278
DO - 10.1016/j.mvr.2021.104278
M3 - Journal article
C2 - 34774583
VL - 139
JO - Microvascular Research
JF - Microvascular Research
SN - 0026-2862
M1 - 104278
ER -