Sharp spectral stability for a class of singularly perturbed pseudo-differential operators

Horia D. Cornean, Radu Purice

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citationer (Scopus)
12 Downloads (Pure)

Abstract

Let a.x; ξ/ be a real Hörmander symbol of the type S0;00 .Rd × Rd/, let F be a smooth function with all its derivatives globally bounded, and let Kı be the self-adjoint Weyl quantization of the perturbed symbols a.x C F.ıx/; ξ/, where jıj ≤ 1. First, we prove that the Hausdorff distance between the spectra of Kı and K0 is bounded by pjıj, and we give examples where spectral gaps of this magnitude can open when ı ¤ 0. Second, we show that the distance between the spectral edges of Kı and K0 (and also the edges of the inner spectral gaps, as long as they remain open at ı D 0) are of order jıj, and give a precise dependence on the width of the spectral gaps.

OriginalsprogEngelsk
TidsskriftJournal of Spectral Theory
Vol/bind13
Udgave nummer3
Sider (fra-til)1129-1144
Antal sider16
ISSN1664-039X
DOI
StatusUdgivet - 2023

Bibliografisk note

Publisher Copyright:
© 2023 European Mathematical Society Published by EMS Press.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Sharp spectral stability for a class of singularly perturbed pseudo-differential operators'. Sammen danner de et unikt fingeraftryk.

Citationsformater