Smart energy system approach validated by electrical analysis for electric vehicle integration in islands

Alejandro Jiménez, Pedro Cabrera*, José Fernando Medina, Poul Alberg Østergaard, Henrik Lund

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Citationer (Scopus)
16 Downloads (Pure)

Abstract

This article discusses the integration of renewable energy sources in islanded energy systems, focusing on electrification of the transport sector and highlighting the challenges that are faced. The proposed method comprises different steps. First, the energy system is analyzed using the Smart Energy Systems concept to identify high renewable energy scenarios. Then, the power system is evaluated to ensure compliance with security and stability requirements. The method innovatively combines an overall energy system analysis, from an energy planning perspective, with more detailed power system analyses, where the power balance at each instant is the main item of interest rather than the energy balance. The study, applied to Gran Canaria (Canary Islands, Spain), demonstrates that 100% electrification of passenger cars with renewable energy sources is the optimal scenario, resulting in reductions of 45.86% and 45.1% in oil consumption and CO2 emissions, respectively, compared to the reference scenario. In addition, in these optimal conditions, there would be a 29.9% reduction in the total annual costs of the energy system and a 13.81% reduction in the total energy required to supply it. The stability analysis that was undertaken confirms that the system can handle a significant electric vehicle load and high renewable energy production without excessive load shedding.
OriginalsprogEngelsk
Artikelnummer118121
TidsskriftEnergy Conversion and Management
Vol/bind302
Antal sider19
ISSN0196-8904
DOI
StatusUdgivet - 15 feb. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Smart energy system approach validated by electrical analysis for electric vehicle integration in islands'. Sammen danner de et unikt fingeraftryk.

Citationsformater