Sparse Incremental Aggregation in Satellite Federated Learning

Nasrin Razmi, Sourav Mukherjee, Bho Matthiesen, Armin Dekorsy, Petar Popovski

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

This paper studies Federated Learning (FL) in low Earth orbit (LEO) satellite constellations, where satellites are connected via intra-orbit inter-satellite links (ISLs) to their neighboring satellites. During the FL training process, satellites in each orbit forward gradients from nearby satellites, which are eventually transferred to the parameter server (PS). To enhance the efficiency of the FL training process, satellites apply in-network aggregation, referred to as incremental aggregation. In this work, the gradient sparsification methods from [1] are applied to satellite scenarios to improve bandwidth efficiency during incremental aggregation. The numerical results highlight an increase of over 4 x in bandwidth efficiency as the number of satellite in the orbital plane increases.
OriginalsprogEngelsk
Titel2025 14th International ITG Conference on Systems, Communications and Coding (SCC)
Antal sider6
ForlagIEEE (Institute of Electrical and Electronics Engineers)
Publikationsdato13 mar. 2025
Sider1-6
Artikelnummer10949091
ISBN (Trykt)979-8-3315-2290-2
ISBN (Elektronisk)9798331522896
DOI
StatusUdgivet - 13 mar. 2025
Begivenhed2025 14th International ITG Conference on Systems, Communications and Coding (SCC) - Karlsruhe, Germany
Varighed: 10 mar. 202513 mar. 2025

Konference

Konference2025 14th International ITG Conference on Systems, Communications and Coding (SCC)
LokationKarlsruhe, Germany
Periode10/03/202513/03/2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'Sparse Incremental Aggregation in Satellite Federated Learning'. Sammen danner de et unikt fingeraftryk.

Citationsformater