Sparse Modeling of The Early Part of Noisy Room Impulse Responses with Sparse Bayesian Learning

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

2 Citationer (Scopus)

Abstract

A model of a room impulse response (RIR) is useful for a wide range of applications. Typically, the early part of a RIR is sparse, and its sparse structure allows for accurate and simple modeling of the RIR. The existing p(0 < p ≤ 1)-norm-based methods suffer from the sensitivity to the user-selected regularization parameters or a high computational burden. In this work, we propose to reconstruct the sparse model for the early part of RIRs with sparse Bayesian learning (SBL). Under the framework of SBL, the proposed method can adaptively learn the optimal hyper-parameters from data at a low computational cost. Experiment results show that the proposed method has advantages in terms of noise robustness, reconstruction sparsity, and computational efficiency compared to the existing methods.

OriginalsprogEngelsk
Titel2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
Antal sider5
ForlagIEEE
Publikationsdato2022
Sider586-590
Artikelnummer9746069
ISBN (Trykt)978-1-6654-0541-6
ISBN (Elektronisk)978-1-6654-0540-9
DOI
StatusUdgivet - 2022
Begivenhed47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Varighed: 23 maj 202227 maj 2022

Konference

Konference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Land/OmrådeSingapore
ByVirtual, Online
Periode23/05/202227/05/2022
SponsorChinese and Oriental Languages Information Processing Society (COLPIS), Singapore Exhibition and Convention Bureau, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), The Institute of Electrical and Electronics Engineers Signal Processing Society
NavnICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Vol/bind2022-May
ISSN1520-6149

Bibliografisk note

Funding Information:
This work was supported by China Scholarship Council.

Publisher Copyright:
© 2022 IEEE

Fingeraftryk

Dyk ned i forskningsemnerne om 'Sparse Modeling of The Early Part of Noisy Room Impulse Responses with Sparse Bayesian Learning'. Sammen danner de et unikt fingeraftryk.

Citationsformater