5 Citationer (Scopus)


We prove that a large class of parabolic final value problems is well posed. This results via explicit Hilbert spaces that characterise the data yielding existence, uniqueness and stability of solutions. This data space is the graph normed domain of an unbounded operator, which represents a new compatibility condition pertinent for final value problems. The framework is that of evolution equations for Lax–Milgram operators in vector distribution spaces. The final value heat equation on a smooth open set is also covered, and for non-zero Dirichlet data, a non-trivial extension of the compatibility condition is obtained by addition of an improper Bochner integral.

Bidragets oversatte titelOn parabolic final value problems and well-posedness
TidsskriftComptes Rendus Mathematique
Udgave nummer3
Sider (fra-til)301-305
Antal sider5
StatusUdgivet - 2018


Dyk ned i forskningsemnerne om 'Sur les problèmes paraboliques à valeur finale bien posés'. Sammen danner de et unikt fingeraftryk.