The F4U system for understanding the effects of data quality

Daniele Foroni, Matteo Lissandrini, Yannis Velegrakis

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

3 Citationer (Scopus)

Abstract

We demonstrate a system that enables a data-centric approach in understanding data quality. Instead of directly quantifying data quality as traditionally done, it disrupts the quality of the dataset and monitors the deviations in the output of an analytic task at hand. It computes the correlation factor between the disruption and the deviation and uses it as the quality metric. This allows users to understand not only the quality of their dataset but also the effect that present and future quality issues have to the intended analytic tasks. This is a novel data-centric approach aimed at complementing existing solutions. On top of the new information that it provides, and in contrast to existing techniques of data quality, it neither requires knowledge of the clean datasets, nor of the constraints on which the data should comply.

OriginalsprogEngelsk
TitelProceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021
Antal sider4
ForlagIEEE Computer Society Press
Publikationsdatoapr. 2021
Sider2717-2720
Artikelnummer9458779
ISBN (Trykt)978-1-7281-9185-0
ISBN (Elektronisk)978-1-7281-9184-3
DOI
StatusUdgivet - apr. 2021
Begivenhed37th IEEE International Conference on Data Engineering, ICDE 2021 - Virtual, Chania, Grækenland
Varighed: 19 apr. 202122 apr. 2021

Konference

Konference37th IEEE International Conference on Data Engineering, ICDE 2021
Land/OmrådeGrækenland
ByVirtual, Chania
Periode19/04/202122/04/2021
NavnProceedings of the International Conference on Data Engineering
ISSN1063-6382

Bibliografisk note

Publisher Copyright:
© 2021 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'The F4U system for understanding the effects of data quality'. Sammen danner de et unikt fingeraftryk.

Citationsformater