The Reachability Problem for Neural-Network Control Systems

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

A control system consists of a plant component and a controller which periodically computes a control input for the plant. We consider systems where the controller is implemented by a feedforward neural network with ReLU activations. The reachability problem asks, given a set of initial states, whether a set of target states can be reached. We show that this problem is undecidable even for trivial plants and fixed-depth neural networks with three inputs and outputs. We also show that the problem becomes semi-decidable when the plant as well as the input and target sets are given by automata over infinite words.

OriginalsprogEngelsk
TitelBridging the Gap Between AI and Reality - 1st International Conference, AISoLA 2023, Selected Papers
RedaktørerBernhard Steffen
Antal sider15
ForlagSpringer Science+Business Media
Publikationsdato2025
Sider455-469
ISBN (Trykt)9783031737404
DOI
StatusUdgivet - 2025
Begivenhed1st International Symposium on Leveraging Applications of Formal Methods, AISoLA 2023 - Crete, Grækenland
Varighed: 23 okt. 202328 okt. 2023

Konference

Konference1st International Symposium on Leveraging Applications of Formal Methods, AISoLA 2023
Land/OmrådeGrækenland
ByCrete
Periode23/10/202328/10/2023
NavnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vol/bind14129 LNCS
ISSN0302-9743

Bibliografisk note

Publisher Copyright:
© The Author(s) 2025.

Fingeraftryk

Dyk ned i forskningsemnerne om 'The Reachability Problem for Neural-Network Control Systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater