The role of effectiveness factor on the modeling of methanol steam reforming over CuO/ZnO/Al2O3 catalyst in a multi-tubular reactor

Jimin Zhu*, Samuel Simon Araya, Xiaoti Cui, Søren Knudsen Kær

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

21 Citationer (Scopus)
248 Downloads (Pure)

Abstract

A pseudo-homogeneous model for the methanol steam reforming process was developed based on reaction kinetics over a CuO/ZnO/Al2O3 catalyst and non-adiabatic heat and mass transfer performances in a co-current packed-bed reactor. A Thiele modulus method and an intraparticle distribution method were applied for predicting the effectiveness factors for main reactions and providing insights into the diffusion-reaction process in a cylindrical catalyst pellet. The results of both methods are validated and show good agreements with the experimental data, but the intraparticle distribution method provides better predictions. Results indicate that increases in catalyst size and bulk fluid temperature amplify the impact of intraparticle diffusion limitations, showing a decrease in effectiveness factors. To satisfy the requirements of a high temperature polymer electrolyte membrane fuel cell stack, the optimized operating conditions, which bring the methanol and CO concentrations to less than 1% vol in the reformate stream, are determined based on the simulation results.
OriginalsprogEngelsk
TidsskriftInternational Journal of Hydrogen Energy
Vol/bind47
Udgave nummer14
Sider (fra-til)8700-8715
Antal sider16
ISSN0360-3199
DOI
StatusUdgivet - 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'The role of effectiveness factor on the modeling of methanol steam reforming over CuO/ZnO/Al2O3 catalyst in a multi-tubular reactor'. Sammen danner de et unikt fingeraftryk.

Citationsformater