Time Series Management Systems: A 2022 Survey

Publikation: Bidrag til bog/antologi/rapport/konference proceedingBidrag til bog/antologiForskningpeer review

234 Downloads (Pure)

Abstract

Enormous amounts of time series are being collected in many different domains. These include, but are not limited to, aviation, computing, energy, finance, logistics, and medicine. However, general-purpose Database Management Systems (DBMSs) are not optimized for times series management and thus significantly limit the amount of time series that can be efficiently stored and analyzed. As a remedy, specialized Time Series Management Systems (TSMSs) have been developed. This chapter, provides a thorough survey and classification of TSMSs that are developed through academic or industrial research and documented through peer-reviewed papers. To document their design and novel contributions, a summary of each system is provided. The systems are primarily classified based on their architecture. In addition, the systems are classified based on: when and why each system was developed, how it can be deployed, how mature its implementation is, how scalable it is, how it processes time series, what interfaces it provides, the type of approximation it supports, how low latency it can achieve, how it stores time series, and the types of queries it supports. The chapter concludes with a collection of open research problems based on the limitations of the surveyed systems.
OriginalsprogEngelsk
TitelData Series Management and Analytics
RedaktørerThemis Palpanas, Kostas Zoumpatianos
Antal sider81
ForlagAssociation for Computing Machinery
StatusAccepteret/In press - 4 dec. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Time Series Management Systems: A 2022 Survey'. Sammen danner de et unikt fingeraftryk.
  • Holistic Analytics of Sensor Data from Renewable Energy Sources: A Vision Paper

    Jensen, S. K. & Thomsen, C., 31 aug. 2023, New Trends in Database and Information Systems, ADBIS 2023 Proceedings. Abelló, A., Romero, O., Vassiliadis, P., Wrembel, R., Bugiotti, F., Gamper, J., Vargas Solar, G. & Zumpano, E. (red.). Springer, s. 360-366 7 s. (Communications in Computer and Information Science, Bind 1850 CCIS).

    Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

    Åben adgang
    Fil
    2 Citationer (Scopus)
    9 Downloads (Pure)
  • ModelarDB: Integrated Model-Based Management of Time Series from Edge to Cloud

    Jensen, S. K., Thomsen, C. & Pedersen, T. B., 9 feb. 2023, Transactions on Large-Scale Data- and Knowledge-Centered Systems LIII. Hameurlain, A. & Tjoa, A. M. (red.). Springer, s. 1-33 33 s. (Transactions on Large-Scale Data- and Knowledge-Centered Systems). (Lecture Notes in Computer Science, Bind 13840).

    Publikation: Bidrag til bog/antologi/rapport/konference proceedingBidrag til bog/antologiForskningpeer review

    Åben adgang
    Fil
    42 Downloads (Pure)
  • Extreme-Scale Model-Based Time Series Management with ModelarDB (Invited Talk)

    Pedersen, T. B., sep. 2021, 28th International Symposium on Temporal Representation and Reasoning, TIME 2021, September 27-29, 2021, Klagenfurt, Austria.. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, s. 2:1-2:2 (Leibniz International Proceedings in Informatics, Bind 206).

    Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

    Åben adgang
    Fil
    40 Downloads (Pure)

Citationsformater