TY - JOUR
T1 - Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation
AU - Yoon, Gil Ho
AU - Jensen, Jens Stissing
AU - Sigmund, Ole
PY - 2007
Y1 - 2007
N2 - The paper presents a gradient-based topology optimization formulation that allows to solve acoustic-structure (vibro-acoustic) interaction problems without explicit boundary interface representation. In acoustic-structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface-coupling integrals, however, such a formulation does not allow for free material re-distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two-dimensional acoustic-structure problems are optimized in order to verify the proposed method.
AB - The paper presents a gradient-based topology optimization formulation that allows to solve acoustic-structure (vibro-acoustic) interaction problems without explicit boundary interface representation. In acoustic-structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface-coupling integrals, however, such a formulation does not allow for free material re-distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two-dimensional acoustic-structure problems are optimized in order to verify the proposed method.
U2 - 10.1002/nme.1900
DO - 10.1002/nme.1900
M3 - Journal article
SN - 0029-5981
VL - 70
SP - 1049
EP - 1075
JO - International Journal for Numerical Methods in Engineering
JF - International Journal for Numerical Methods in Engineering
IS - 9
ER -