Projekter pr. år
Abstract
The need for adaptable models, e.g. reinforcement learning, have in recent years been more present within the industry. In this paper, we show how two versions of inverse reinforcement learning can be used to transfer task knowledge from a human expert to a robot in a dynamic environment. Moreover, a second method called Principal Component Analysis weighting is presented and discussed. The method shows potential in the use case but requires some more research.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII 2020 |
Antal sider | 5 |
Forlag | IEEE |
Publikationsdato | 2020 |
Sider | 933-937 |
Artikelnummer | 9025873 |
ISBN (Elektronisk) | 9781728166674 |
DOI | |
Status | Udgivet - 2020 |
Begivenhed | IEEE/SICE International Symposium on System Integration - Hawaii Convention Center, Honolulu, USA Varighed: 12 jan. 2020 → 15 jan. 2020 |
Konference
Konference | IEEE/SICE International Symposium on System Integration |
---|---|
Lokation | Hawaii Convention Center |
Land/Område | USA |
By | Honolulu |
Periode | 12/01/2020 → 15/01/2020 |
Navn | Proceedings of the 2020 IEEE/SICE International Symposium on System Integration |
---|---|
ISSN | 2474-2325 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Transferring Human Manipulation Knowledge to Robots with Inverse Reinforcement Learning'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
MADE Digital WP5.3 - Designing Self-Configuring and Self-Learning Smart Factories
Bøgh, S., Chrysostomou, D., Anguiozar, N. U., Andersen, R. S. & Arexolaleiba, N. A.
01/03/2017 → 31/12/2019
Projekter: Projekt › Forskning