Unsupervised Feature Subset Selection

Nicolaj Søndberg-Madsen, C. Thomsen, Jose Pena

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskning

Abstract

This paper studies filter and hybrid filter-wrapper feature subset selection for unsupervised learning (data clustering). We constrain the search for the best feature subset by scoring the dependence of every feature on the rest of the features, conjecturing that these scores discriminate some irrelevant features. We report experimental results on artificial and real data for unsupervised learning of naive Bayes models. Both the filter and hybrid approaches perform satisfactorily.
OriginalsprogEngelsk
TitelProceedings on the Workshop on Probabilistic Graphical Models for Classification : (within ECML/PKDD 2003)
Antal sider11
Publikationsdato2003
Sider71-82
StatusUdgivet - 2003
BegivenhedECML/PKDD - Cavtat-Dubrovnik, Kroatien
Varighed: 22 sep. 200326 sep. 2003
Konferencens nummer: 14th / 7th

Konference

KonferenceECML/PKDD
Nummer14th / 7th
Land/OmrådeKroatien
ByCavtat-Dubrovnik
Periode22/09/200326/09/2003

Fingeraftryk

Dyk ned i forskningsemnerne om 'Unsupervised Feature Subset Selection'. Sammen danner de et unikt fingeraftryk.

Citationsformater