Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions

Anders T. Christensen, Carolina Abdala, Christopher A. Shera

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

5 Citationer (Scopus)

Abstract

Swept tones allow the efficient measurement of otoacoustic emissions (OAEs) with fine frequency resolution. Although previous studies have explored the influence of different sweep parameters on the measured OAE, none have directly considered their effects on the measurement noise floor. The present study demonstrates that parameters such as sweep type (e.g., linear or logarithmic), sweep rate, and analysis bandwidth affect the measurement noise and can be manipulated to control the noise floor in individual subjects. Although responses to discrete-tone stimuli can be averaged until the uncertainty of the measurement meets a specified criterion at each frequency, linear or logarithmic sweeps offer no such flexibility. However, measurements of the power spectral density of the ambient noise can be used to construct variable-rate sweeps that yield a prescribed (e.g., constant) noise floor across frequency; in effect, they implement a form of frequency-dependent averaging. The use of noise-compensating frequency sweeps is illustrated by the measurement of distortion-product OAEs at low frequencies, where the ear-canal noise is known to vary significantly.

OriginalsprogEngelsk
TidsskriftJournal of the Acoustical Society of America
Vol/bind146
Udgave nummer5
Sider (fra-til)3457-3465
Antal sider9
ISSN0001-4966
DOI
StatusUdgivet - 1 nov. 2019
Udgivet eksterntJa

Bibliografisk note

Funding Information:
We thank the two anonymous reviewers for their helpful comments. This work is supported by the National Institutes of Health Grant Nos. R01 DC003552 (C.A.) and R01 DC003687 (C.A.S.).

Publisher Copyright:
© 2019 Acoustical Society of America.

Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions'. Sammen danner de et unikt fingeraftryk.

Citationsformater