Weed Recognition Framework for Robotic Precision Farming

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

10 Citationer (Scopus)

Abstrakt

In this paper, we introduce a novel framework which applies known image features combined with advanced linear image representations for weed recognition. Our proposed weed recognition framework, is based on state-of-the-the art object/image categorization methods exploiting enhanced performance using advanced encoding and machine learning algorithms. The resulting system can be applied in a variety of environments, plantation or weed types. This results in a novel and generic weed control approach, that in our knowledge is unique among weed recognition methods and systems. For the experimental evaluation of our system, we introduce a challenging image dataset for weed recognition. We experimentally show that the proposed system achieves significant performance improvements in weed recognition in comparison with other known methods.
OriginalsprogEngelsk
Titel2016 IEEE International Conference on Imaging Systems and Techniques (IST)
Antal sider6
ForlagIEEE
Publikationsdato6 okt. 2016
ISBN (Trykt)978-1-5090-1818-5
ISBN (Elektronisk)978-1-5090-1817-8
DOI
StatusUdgivet - 6 okt. 2016
BegivenhedIEEE International Conference on Imaging Systems and Techniques - Chania, Grækenland
Varighed: 4 okt. 20166 okt. 2016
http://ist2016.ieee-ims.org/

Konference

KonferenceIEEE International Conference on Imaging Systems and Techniques
LandGrækenland
ByChania
Periode04/10/201606/10/2016
Internetadresse

Fingeraftryk Dyk ned i forskningsemnerne om 'Weed Recognition Framework for Robotic Precision Farming'. Sammen danner de et unikt fingeraftryk.

Citationsformater