Projects per year
Fingerprint
- 1 Similar Profiles
Collaborations from the last five years
Projects
- 1 Active
-
DarkScience: Illuminating microbial dark matter through data science
Albertsen, M. (PI), Hose, K. (PI), Nielsen, T. D. (PI), Heidelbach, S. (Project Participant), Knudsen, K. S. (Project Participant), Sereika, M. (Project Participant), Corfixen, M. (Project Participant), Celikkanat, A. (Project Participant), Masegosa, A. (Project Participant), Sagi, T. (Project Participant), Nissen, J. (Project Participant), Heede, T. (Project Participant) & Kirkegaard, R. H. (Project Participant)
01/11/2022 → …
Project: Research
Research output
-
Joint Additive Gaussian Processes for Microbial Species Distribution Modeling
Heede, T., Celikkanat, A., Delogu, F., Masegosa, A., Albertsen, M. & Nielsen, T. D., May 2025, 13th Workshop on Uncertainty Processing. p. 128-139 12 p.Research output: Contribution to book/anthology/report/conference proceeding › Article in proceeding › Research
Open Access -
Learning Styles Impact Students’ Perceptions on Active Learning Methodologies: A Case Study on the Use of Live Coding and Short Programming Exercises
Masegosa, A. R., Cabañas, R., Maldonado, A. D. & Morales, M., Mar 2024, In: Education Sciences. 14, 3, 250.Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile7 Citations (Scopus)22 Downloads (Pure) -
PAC-Bayes-Chernoff bounds for unbounded losses
Casado, I., Ortega, L. A., Pérez, A. & Masegosa, A. R., 2024, In: Advances in Neural Information Processing Systems. 37, 25 p.Research output: Contribution to journal › Conference article in Journal › Research › peer-review
Open AccessFile1 Citation (Scopus)13 Downloads (Pure) -
Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning
Celikkanat, A., Masegosa, A. R. & Nielsen, T. D., 10 Dec 2024, In: Advances in Neural Information Processing Systems. 37, p. 118930-118952Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile29 Downloads (Pure) -
The Cold Posterior Effect Indicates Underfitting, and Cold Posteriors Represent a Fully Bayesian Method to Mitigate It
Zhang, Y., Wu, Y. S., Ortega, L. A. & Masegosa, A. R., 2024, In: Transactions on Machine Learning Research. 2024, 8Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile17 Downloads (Pure)