Projects per year
Fingerprint
- 1 Similar Profiles
Collaborations from the last five years
Projects
- 1 Finished
-
Enabling ultra-reliable low-latency communication in wireless networks via interference prediction
Berardinelli, G. & Adeogun, R.
01/10/2019 → 30/04/2022
Project: Research
Research output
-
Towards 6G in-X subnetworks with sub-millisecond communication cycles and extreme reliability
Adeogun, R., Berardinelli, G., E. Mogensen, P., Rodriguez, I. & Razzaghpour, M., 11 Jun 2020, In: IEEE Access. 8, p. 110172-110188 17 p., 9114878.Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile38 Citations (Scopus)60 Downloads (Pure) -
Learning Parameters of Stochastic Radio Channel Models from Summaries
Bharti, A., Adeogun, R. O. & Pedersen, T., May 2020, In: IEEE Open Journal of Antennas and Propagation. 1, p. 175-188 14 p.Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile18 Citations (Scopus)151 Downloads (Pure) -
Distributed Dynamic Channel Allocation in 6G in-X Subnetworks for Industrial Automation
Adeogun, R., Berardinelli, G., Rodriguez, I. & E. Mogensen, P., 2020, 2020 IEEE Globecom Workshops, GC Wkshps 2020 - Proceedings. IEEE, 6 p. 367532Research output: Contribution to book/anthology/report/conference proceeding › Article in proceeding › Research › peer-review
Open AccessFile14 Citations (Scopus)252 Downloads (Pure) -
Indoor Occupancy Detection and Estimation using Machine Learning and Measurements from an IoT LoRa-based Monitoring System
Adeogun, R. O., Rodriguez, I., Razzaghpour, M., Berardinelli, G., Christensen, P. H. & Mogensen, P., 18 Jun 2019, Global IoT Summit, GIoTS 2019 - Proceedings. IEEE, 5 p. 8766374Research output: Contribution to book/anthology/report/conference proceeding › Article in proceeding › Research › peer-review
File20 Citations (Scopus)412 Downloads (Pure) -
Polarimetric Wireless Indoor Channel Modelling Based on Propagation Graph
Adeogun, R., Pedersen, T., Gustafson, C. & Tufvesson, F., Oct 2019, In: I E E E Transactions on Antennas and Propagation. 67, 10, p. 6585-6595 11 p., 8753690.Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile16 Citations (Scopus)356 Downloads (Pure)
Datasets
-
Deep Learning method for calibrating the polarimetric Propagation graph model
Bharti, A. (Contributor), Adeogun, R. (Contributor) & Pedersen, T. (Creator), Code Ocean, 2 Feb 2021
DOI: 10.24433/co.5156985.v1, https://codeocean.com/capsule/2054803/tree/v1
Dataset
-
Approximate Bayesian Computation method for calibrating the Propagation Graph model using Summaries
Bharti, A. (Contributor), Adeogun, R. (Contributor) & Pedersen, T. (Creator), Code Ocean, 25 Jan 2021
DOI: 10.24433/co.1331203.v1, https://codeocean.com/capsule/6694343/tree/v1
Dataset