Project Details
Description
Microgrids (MG) effectively ease the integration of renewable energy sources (RES) and energy storage systems (ESS) at the consumption level, which generally aims to increase the efficiency of the electrical system and reduce the dependency of the electrical supply on fossil fuels. On the other hand, the MGs concept has been widely studied, which focuses on overcoming these issues in a reliable, efficient, and sustainable way, but still, challenges exist. For instance, the severe power outages caused by natural disasters (ND), such as tsunamis, floods, earthquakes, etc. all of which affect industrial production, disturb business as well as home operations, and may endanger human lives. These possible natural disasters and incidents impose new challenges involving sophisticated control strategies, operations, and vulnerability to natural disasters. Most of these events directly affect the overall power system and as well communication system. After a disaster, the main grid may blackout, and gen-sets are shut down for security reasons. In this situation, low-power portable containerized Ad-Hoc MGs can provide an emergency solution for two or three days to the critical loads, and potable water pumps can be provided to relieve the damaged area. However, resilience in front of extreme grid faults is still a technical challenge for MGs to deal with NDs. Therefore, the main concerns and current challenges for increasing renewable energy penetration and resiliency in power systems should be targeted to ensure high and unprecedented levels of system resiliency and recovery under NDs. For this purpose, we need resilient energy systems that are robust against these events, moreover, they can keep the power system safe against overall collapse and complete power outages as much as possible. For sizing and siting of ad-hoc and community MGs to supply energy for emergency clinic support and clean water provision in the potentially damaged areas caused by NDs are done by using HOMER Grid/Simulink. Operational Management Systems (OMS) will be developed by using GAMS and Matlab/Simulink for the microgrid operation taking into account the priority of sensitive loads in the islands during the ND. For experimental verification, the project outcomes will also be implemented on real-time control and monitoring platform (dSPACE) in the microgrids Laboratory. This Ph.D. project part of the planning and operational management systems (OMS) is aligned with the ongoing project `Microgrid Technologies for Remote Indonesian Islands-TECH-IN` to cope with the main concerns to provide high levels of resiliency and availability of electricity supply in front of natural disasters.
Funding: ChiefMinister Merit Scholarships (CMMS), The Punjab Educational Endowment Fund (PEEF), Pakistan.Sponsored: Ministry of Foreign Affairs of Denmark, DANIDA Fellowship Centre (Project No. 20-M06-AAU) and supported byDANIDA Fellowship Centre and TECHIN Cerner of Research on Microgrids AAUEnergy, Aalborg University, Aalborg Denmark.
Layman's description
Key findings
Short title | Resilient Microgrids |
---|---|
Status | Active |
Effective start/end date | 01/01/2022 → 01/02/2025 |
Collaborative partners
- University of Southern Denmark (Project partner)
- Gadjah Mada University (Project partner)
UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):
Keywords
- Microgrids
- Remote collaboration
- Natural Disaster
- Renewable energy sources
- Resilient Control
- Solar Energy
- Wind Energy
- Battery Energy storage Systems
- Ad-Hoc Microgrids
- Community Microgrids
- Network Microgrids
- Planning
- Operation Management
- Optimization
- Energy management
- Power Electronics
- HOMER Pro
- HOMER Grid
- MATLAB Simulink
- Games