TY - JOUR
T1 - A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide
AU - Petriglieri, Francesca
AU - Kondrotaite, Zivile
AU - Singleton, Caitlin Margaret
AU - Nierychlo, Marta Anna
AU - Dueholm, Morten Kam Dahl
AU - Nielsen, Per Halkjær
PY - 2023/12/21
Y1 - 2023/12/21
N2 - Filamentous Chloroflexota are abundant in activated sludge wastewater treatment plants (WWTPs) worldwide and are occasionally associated with poor solid-liquid separation or foaming, but most of the abundant lineages remain undescribed. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide, using high-quality metagenome-assembled genomes (MAGs) and 16S rRNA amplicon data from 740 Danish and global WWTPs. Many novel taxa were described, encompassing 4 families, 13 genera, and 29 novel species. These were widely distributed across most continents, influenced by factors such as climate zone and WWTP process design. Visualization by fluorescence in situ hybridization (FISH) confirmed their high abundances in many WWTPs based on the amplicon data and showed a filamentous morphology for nearly all species. Most formed thin and short trichomes integrated into the floc structure, unlikely to form the typical inter-floc bridging that hinders activated sludge floc settling. Metabolic reconstruction of 53 high-quality MAGs, representing most of the novel genera, offered further insights into their versatile metabolisms and suggested a primary role in carbon removal and involvement in nitrogen cycling. The presence of glycogen reserves, detected by FISH-Raman microspectroscopy, seemed widespread across the phylum, demonstrating that these bacteria likely utilize glycogen as energy storage to survive periods with limited resources. This study gives a broad overview of the Chloroflexota community in global activated sludge WWTPs and improves our understanding of their roles in these engineered ecosystems.
AB - Filamentous Chloroflexota are abundant in activated sludge wastewater treatment plants (WWTPs) worldwide and are occasionally associated with poor solid-liquid separation or foaming, but most of the abundant lineages remain undescribed. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide, using high-quality metagenome-assembled genomes (MAGs) and 16S rRNA amplicon data from 740 Danish and global WWTPs. Many novel taxa were described, encompassing 4 families, 13 genera, and 29 novel species. These were widely distributed across most continents, influenced by factors such as climate zone and WWTP process design. Visualization by fluorescence in situ hybridization (FISH) confirmed their high abundances in many WWTPs based on the amplicon data and showed a filamentous morphology for nearly all species. Most formed thin and short trichomes integrated into the floc structure, unlikely to form the typical inter-floc bridging that hinders activated sludge floc settling. Metabolic reconstruction of 53 high-quality MAGs, representing most of the novel genera, offered further insights into their versatile metabolisms and suggested a primary role in carbon removal and involvement in nitrogen cycling. The presence of glycogen reserves, detected by FISH-Raman microspectroscopy, seemed widespread across the phylum, demonstrating that these bacteria likely utilize glycogen as energy storage to survive periods with limited resources. This study gives a broad overview of the Chloroflexota community in global activated sludge WWTPs and improves our understanding of their roles in these engineered ecosystems.
KW - Chloroflexota
KW - activated sludge
KW - fluorescence in situ hybridization
KW - metagenome-assembled genomes
KW - wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85180600743&partnerID=8YFLogxK
U2 - 10.1128/msystems.00667-23
DO - 10.1128/msystems.00667-23
M3 - Review article
C2 - 37992299
SN - 2379-5077
VL - 8
JO - mSystems
JF - mSystems
IS - 6
M1 - e00667-23
ER -