A continuum damage model for composite laminates: Part IV- Experimental and numerical tests

J. Llobet*, P. Maimí, A. Turon, B. L.V. Bak, E. Lindgaard, L. Carreras, Y. Essa, F. Martin de la Escalera

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

10 Citations (Scopus)

Abstract

This paper follows on from part III (Llobet et al., 2020) where a mesoscale continuum damage mechanics (CDM) model for composite laminates under static and fatigue loads has been presented. An experimental investigation on the damage occurrence and the strength of carbon/epoxy notched laminates subjected to static, tension-tension fatigue and residual strength tests is provided. X-ray inspections reveal that matrix cracking, longitudinal splitting and delamination control the fatigue degradation process. This paper presents a coupled computational model to account for intralaminar damage using the CDM model and interlaminar damage using a cohesive zone model (CZM). The capability of the computational model to capture the main fatigue degradation mechanisms and the residual strength is examined by simulating open-hole and double-edge notched specimens. The numerical predictions show that the main fatigue degradation mechanisms are well captured as well as the post-fatigue residual strengths except for the open-hole specimen. Further experimental and modelling work are required to develop a more reliable computational tool for quantitative evaluation of fatigue and damage tolerance of composite structures.

Original languageEnglish
Article number103686
JournalMechanics of Materials
Volume154
ISSN0167-6636
DOIs
Publication statusPublished - Mar 2021

Bibliographical note

Funding Information:
The authors would like to acknowledge the financial support of the Spanish Government through the Ministerio de Ciencia, Innovación y Universidades under the contracts RTC-2014-1958-4 and RTI 2018-097880-B-I00 .

Publisher Copyright:
© 2020 Elsevier Ltd

Keywords

  • Cohesive zone models
  • Continuum damage mechanics
  • Fatigue
  • Residual strength

Fingerprint

Dive into the research topics of 'A continuum damage model for composite laminates: Part IV- Experimental and numerical tests'. Together they form a unique fingerprint.

Cite this