A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks

Zhaoming Yang, Zhe Liu, Jing Zhou, Chaofan Song, Qi Xiang, Qian He, Jingjing Hu, Michael H. Faber, Enrico Zio, Zhenlin Li, Huai Su*, Jinjun Zhang*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

21 Citations (Scopus)

Abstract

Calorific value metering offers unique advantages in the natural gas industry. Based on a graph neural network (GNN), this study proposes a method for metering the gas calorific value in natural gas transportation. Graph theory is introduced to consider the effects of physical topology and node properties in natural gas pipeline networks. Inductive inference is performed in conjunction with dynamic graph training mechanisms to improve the accuracy of the prediction models and simulate the corresponding model responses when topological relationships or node properties change. The results show that graph deep learning can accurately capture the spatio-temporal characteristics of mixed gas transport processes in a pipeline network. Compared with a normal deep-learning algorithm, the performance improvement of the proposed GNN algorithm can be as high as 62% in R2 and 50% in mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) metrics, depending on the different scenarios and noises. This model can be applied to various scenarios, such as pipeline extensions and hydrogen blending. Based on all the tests conducted, the generalization ability of the algorithm is better than that of the others, with the accuracies of most cases satisfying the requirements of metering stations.

Original languageEnglish
Article number127875
JournalEnergy
Volume278
ISSN0360-5442
DOIs
Publication statusPublished - 1 Sept 2023

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

Keywords

  • Calorific value metering
  • GNN
  • Natural gas
  • Pipeline networks
  • Prediction

Fingerprint

Dive into the research topics of 'A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks'. Together they form a unique fingerprint.

Cite this