A Novel Direct Power Control for DFIG with Parallel Compensator under Unbalanced Grid Condition

Shuning Gao, Haoran Zhao*, Yonghao Gui, Dao Zhou, Vladimir Terzija, Frede Blaabjerg

*Corresponding author

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

This paper presents a Voltage-Modulated Direct Power Control (VM-DPC) with an additional parallel compensator for the Doubly Fed Induction Generator (DFIG) under unbalanced grid conditions. The proposed method not only guarantees a satisfying steady-state performance but provides also a regulating property of the negative-sequence output currents through designed negative-sequence parallel compensator. It can provide symmetrical stator currents and suppress the ripples in both active and reactive powers under unbalanced grid conditions. The performance of the proposed method are verified by comparing it with three different control strategies in simulations carried out in Matlab/Simulink SimScape Power System. Finally, the effectiveness of the proposed method is evaluated in an experimental prototype, which proves the proposed VM-DPC with the additional compensator has a satisfactory steady-state performance and a fast power transient response under unbalanced grid conditions. SimScape Power System.
Original languageEnglish
JournalI E E E Transactions on Industrial Electronics
Pages (from-to)1-12
Number of pages12
ISSN0278-0046
DOIs
Publication statusE-pub ahead of print - 15 Sep 2020

Fingerprint Dive into the research topics of 'A Novel Direct Power Control for DFIG with Parallel Compensator under Unbalanced Grid Condition'. Together they form a unique fingerprint.

  • Activities

    • 1 Hosting a guest lecturer

    Shuning Gao

    Yonghao Gui (Host)

    15 Dec 201931 Mar 2020

    Activity: Hosting a guest lecturer

    Research Output

    • 1 Article in proceeding

    Dual Grid Voltage Modulated Direct Power Control of Grid-Connected Voltage Source Converter under Unbalanced Network Condition

    Gao, S., Zhao, H. & Gui, Y., May 2019, 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, p. 2167-2172 6 p. 8881078. (Innovative Smart Grid Technologies - Asia (ISGT Asia), IEEE).

    Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

    Open Access
    File
  • 13 Downloads (Pure)

    Cite this