Abstract
Introduction
Outdoor workers are exposed to high levels of solar ultraviolet radiation (UVR). UVR causes skin cancer and is a risk factor for cataract and other short- and long-term health effects, but there are significant knowledge gaps regarding the exposure-response relations based on quantitative measures of UVR exposure. We developed a quantitative UVR job-exposure matrix (JEM) for the general working population of Europe.
Methods
Three experts from each of Northern, Central, and Southern Europe rated duration of outdoor work for all 372 occupations defined by the International Standard Classification of Occupations from 1988 (ISCO-88(COM)). A systematic literature search identified 12 studies providing 223 sets of summary workday UVR exposure for 49 ISCO-88(COM) occupations based on 75,711 personal workday measurements obtained from 2,645 participants and reported as arithmetic mean standard erythemal dose (SED). We combined the expert ratings with the measured occupational UVR exposure data and estimated harmonized workday UVR exposures for all 372 occupations in a linear mixed effects model.
Results
Monotonically increasing workday UVR exposure of 0.68, 1.57, 1.80, and 2.49 SED were seen by increasing expert ratings of 0, 1 to 2, 3 to 4, and ≥5 h of daily outdoor work. The UVR exposure showed a 6-fold increase from lowest to highest exposed occupation. Farm hands, roofers, concrete placers, and other occupations within craft and related trades were among the highest exposed, while bartenders, wood-processing-plant operators, and several white-collar occupations who typically work indoor were among the lowest exposed.
Conclusion
This quantitative JEM for solar UVR exposure proves able to provide substantial discrimination between occupations, shows good agreement with expert assessments, and may facilitate epidemiological studies characterizing the exposure-response relation between occupational solar UVR exposure and different health effects.
Outdoor workers are exposed to high levels of solar ultraviolet radiation (UVR). UVR causes skin cancer and is a risk factor for cataract and other short- and long-term health effects, but there are significant knowledge gaps regarding the exposure-response relations based on quantitative measures of UVR exposure. We developed a quantitative UVR job-exposure matrix (JEM) for the general working population of Europe.
Methods
Three experts from each of Northern, Central, and Southern Europe rated duration of outdoor work for all 372 occupations defined by the International Standard Classification of Occupations from 1988 (ISCO-88(COM)). A systematic literature search identified 12 studies providing 223 sets of summary workday UVR exposure for 49 ISCO-88(COM) occupations based on 75,711 personal workday measurements obtained from 2,645 participants and reported as arithmetic mean standard erythemal dose (SED). We combined the expert ratings with the measured occupational UVR exposure data and estimated harmonized workday UVR exposures for all 372 occupations in a linear mixed effects model.
Results
Monotonically increasing workday UVR exposure of 0.68, 1.57, 1.80, and 2.49 SED were seen by increasing expert ratings of 0, 1 to 2, 3 to 4, and ≥5 h of daily outdoor work. The UVR exposure showed a 6-fold increase from lowest to highest exposed occupation. Farm hands, roofers, concrete placers, and other occupations within craft and related trades were among the highest exposed, while bartenders, wood-processing-plant operators, and several white-collar occupations who typically work indoor were among the lowest exposed.
Conclusion
This quantitative JEM for solar UVR exposure proves able to provide substantial discrimination between occupations, shows good agreement with expert assessments, and may facilitate epidemiological studies characterizing the exposure-response relation between occupational solar UVR exposure and different health effects.
Original language | English |
---|---|
Article number | wxaf011 |
Journal | Annals of Work Exposures and Health |
Volume | 69 |
Issue number | 4 |
Pages (from-to) | 415-428 |
Number of pages | 14 |
ISSN | 2398-7308 |
DOIs | |
Publication status | Published - 1 May 2025 |
Keywords
- epidemiology
- job exposure matrix
- occupational exposure
- ultraviolet radiation