AMIDST: A Java toolbox for scalable probabilistic machine learning

Andres Masegosa, Ana M. Martinez, Darío Ramos-López, Rafael Cabanas de Paz, Antonio Salmerón, Helge Langseth, Thomas Dyhre Nielsen, Anders Læsø Madsen

Research output: Contribution to journalJournal articleResearchpeer-review

1 Citation (Scopus)

Abstract

The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed implementations of scalable algorithms for doing probabilistic inference and Bayesian parameter learning in the specified models. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continuous variables from a wide range of probability distributions.
Original languageEnglish
JournalKnowledge-Based Systems
Volume163
Pages (from-to)595-597
Number of pages3
ISSN0950-7051
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Learning systems
Message passing
Probability distributions
Java
Machine learning
Modeling languages
Latent variables
Software
Open source
Probability distribution
Inference
Language modeling
Graphical models

Keywords

  • Probabilistic graphical models
  • Scalable algorithms
  • Variational methods
  • Latent variables

Cite this

Masegosa, A., Martinez, A. M., Ramos-López, D., Cabanas de Paz, R., Salmerón, A., Langseth, H., ... Madsen, A. L. (2019). AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems, 163, 595-597. https://doi.org/10.1016/j.knosys.2018.09.019
Masegosa, Andres ; Martinez, Ana M. ; Ramos-López, Darío ; Cabanas de Paz, Rafael ; Salmerón, Antonio ; Langseth, Helge ; Nielsen, Thomas Dyhre ; Madsen, Anders Læsø. / AMIDST: A Java toolbox for scalable probabilistic machine learning. In: Knowledge-Based Systems. 2019 ; Vol. 163. pp. 595-597.
@article{77b1a11d7b324fbbb12cf61b3342d033,
title = "AMIDST: A Java toolbox for scalable probabilistic machine learning",
abstract = "The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed implementations of scalable algorithms for doing probabilistic inference and Bayesian parameter learning in the specified models. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continuous variables from a wide range of probability distributions.",
keywords = "Probabilistic graphical models, Scalable algorithms, Variational methods, Latent variables",
author = "Andres Masegosa and Martinez, {Ana M.} and Dar{\'i}o Ramos-L{\'o}pez and {Cabanas de Paz}, Rafael and Antonio Salmer{\'o}n and Helge Langseth and Nielsen, {Thomas Dyhre} and Madsen, {Anders L{\ae}s{\o}}",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.knosys.2018.09.019",
language = "English",
volume = "163",
pages = "595--597",
journal = "Knowledge-Based Systems",
issn = "0950-7051",
publisher = "Elsevier",

}

Masegosa, A, Martinez, AM, Ramos-López, D, Cabanas de Paz, R, Salmerón, A, Langseth, H, Nielsen, TD & Madsen, AL 2019, 'AMIDST: A Java toolbox for scalable probabilistic machine learning', Knowledge-Based Systems, vol. 163, pp. 595-597. https://doi.org/10.1016/j.knosys.2018.09.019

AMIDST: A Java toolbox for scalable probabilistic machine learning. / Masegosa, Andres; Martinez, Ana M.; Ramos-López, Darío; Cabanas de Paz, Rafael; Salmerón, Antonio; Langseth, Helge; Nielsen, Thomas Dyhre; Madsen, Anders Læsø.

In: Knowledge-Based Systems, Vol. 163, 01.01.2019, p. 595-597.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - AMIDST: A Java toolbox for scalable probabilistic machine learning

AU - Masegosa, Andres

AU - Martinez, Ana M.

AU - Ramos-López, Darío

AU - Cabanas de Paz, Rafael

AU - Salmerón, Antonio

AU - Langseth, Helge

AU - Nielsen, Thomas Dyhre

AU - Madsen, Anders Læsø

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed implementations of scalable algorithms for doing probabilistic inference and Bayesian parameter learning in the specified models. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continuous variables from a wide range of probability distributions.

AB - The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed implementations of scalable algorithms for doing probabilistic inference and Bayesian parameter learning in the specified models. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continuous variables from a wide range of probability distributions.

KW - Probabilistic graphical models

KW - Scalable algorithms

KW - Variational methods

KW - Latent variables

UR - http://www.scopus.com/inward/record.url?scp=85055743999&partnerID=8YFLogxK

U2 - 10.1016/j.knosys.2018.09.019

DO - 10.1016/j.knosys.2018.09.019

M3 - Journal article

VL - 163

SP - 595

EP - 597

JO - Knowledge-Based Systems

JF - Knowledge-Based Systems

SN - 0950-7051

ER -

Masegosa A, Martinez AM, Ramos-López D, Cabanas de Paz R, Salmerón A, Langseth H et al. AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems. 2019 Jan 1;163:595-597. https://doi.org/10.1016/j.knosys.2018.09.019