An Active Capacitor with Self-Power and Internal Feedback Control Signals

Haoran Wang, Huai Wang

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

4 Citations (Scopus)

Abstract

This paper proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. A control strategy that does not require any external feedback signal is proposed and a self-power scheme for gate drivers and the controller is applied to achieve the two-terminal active capacitor. The concept, control method, self-power scheme, efficiency, and impedance characteristics of the active capacitor are presented. A case study of the proposed active capacitor for a capacitive DC-link application is discussed. The results reveal a significantly lower overall energy storage of passive elements and a reduced cost to fulfill a specific reliability target, compared to a passive capacitor solution. Proof-of-concept experimental results are given to verify the functionality of the proposed capacitor.
Original languageEnglish
Title of host publicationProceedings of 2017 IEEE Energy Conversion Congress and Exposition (ECCE)
PublisherIEEE Press
Publication dateOct 2017
DOIs
Publication statusPublished - Oct 2017
Event2017 IEEE Energy Conversion Congress and Exposition (ECCE) - Cincinnati, Ohio, United States
Duration: 1 Oct 20175 Oct 2017

Conference

Conference2017 IEEE Energy Conversion Congress and Exposition (ECCE)
Country/TerritoryUnited States
CityCincinnati, Ohio
Period01/10/201705/10/2017

Fingerprint

Dive into the research topics of 'An Active Capacitor with Self-Power and Internal Feedback Control Signals'. Together they form a unique fingerprint.

Cite this