TY - JOUR
T1 - Astrophysics with the Laser Interferometer Space Antenna
AU - Seoane, Pau Amaro
AU - Andrews, Jeff
AU - Sedda, Manuel Arca
AU - Askar, Abbas
AU - Baghi, Quentin
AU - Balasov, Razvan
AU - Bartos, Imre
AU - Bavera, Simone S.
AU - Bellovary, Jillian
AU - Berry, Christopher P. L.
AU - Berti, Emanuele
AU - Bianchi, Stefano
AU - Blecha, Laura
AU - Blondin, Stephane
AU - Bogdanović, Tamara
AU - Boissier, Samuel
AU - Bonetti, Matteo
AU - Bonoli, Silvia
AU - Bortolas, Elisa
AU - Breivik, Katelyn
AU - Capelo, Pedro R.
AU - Caramete, Laurentiu
AU - Cattorini, Federico
AU - Charisi, Maria
AU - Chaty, Sylvain
AU - Chen, Xian
AU - Chruślińska, Martyna
AU - Chua, Alvin J. K.
AU - Church, Ross
AU - Colpi, Monica
AU - D'Orazio, Daniel
AU - Danielski, Camilla
AU - Davies, Melvyn B.
AU - Dayal, Pratika
AU - Rosa, Alessandra De
AU - Derdzinski, Andrea
AU - Destounis, Kyriakos
AU - Dotti, Massimo
AU - Duţan, Ioana
AU - Dvorkin, Irina
AU - Fabj, Gaia
AU - Foglizzo, Thierry
AU - Ford, Saavik
AU - Fouvry, Jean-Baptiste
AU - Franchini, Alessia
AU - Fragos, Tassos
AU - Fryer, Chris
AU - Gaspari, Massimo
AU - Gerosa, Davide
AU - Graziani, Luca
AU - Groot, Paul
AU - Habouzit, Melanie
AU - Haggard, Daryl
AU - Haiman, Zoltan
AU - Han, Wen-Biao
AU - Istrate, Alina
AU - Johansson, Peter H.
AU - Khan, Fazeel Mahmood
AU - Kimpson, Tomas
AU - Kokkotas, Kostas
AU - Kong, Albert
AU - Korol, Valeriya
AU - Kremer, Kyle
AU - Kupfer, Thomas
AU - Lamberts, Astrid
AU - Larson, Shane
AU - Lau, Mike
AU - Liu, Dongliang
AU - Lloyd-Ronning, Nicole
AU - Lodato, Giuseppe
AU - Lupi, Alessandro
AU - Ma, Chung-Pei
AU - Maccarone, Tomas
AU - Mandel, Ilya
AU - Mangiagli, Alberto
AU - Mapelli, Michela
AU - Mathis, Steéphane
AU - Mayer, Lucio
AU - McGee, Sean
AU - McKernan, Berry
AU - Miller, M. Coleman
AU - Mota, David F.
AU - Mumpower, Matthew
AU - Nasim, Syeda S
AU - Nelemans, Gijs
AU - Noble, Scott
AU - Pacucci, Fabio
AU - Panessa, Francesca
AU - Paschalidis, Vasileio
AU - Pfister, Hugo
AU - Porquet, Delphine
AU - Quenby, John
AU - Ricarte, Angelo
AU - Röpke, Friedrich K.
AU - Regan, John
AU - Rosswog, Stephan
AU - Ruiter, Ashley
AU - Ruiz, Milton
AU - Runnoe, Jessie
AU - Schneider, Raffaella
AU - Schnittman, Jeremy
AU - Secunda, Amy
AU - Sesana, Alberto
AU - Seto, Naoki
AU - Shao, Lijing
AU - Shapiro, Stuart
AU - Sopuerta, Carlos
AU - Stone, Nicholas C.
AU - Suvorov, Arthur
AU - Tamanini, Nicola
AU - Tamfal, Tomas
AU - Tauris, Thomas
AU - Temmink, Karel
AU - Tomsick, John
AU - Toonen, Silvia
AU - Torres-Orjuela, Alejandro
AU - Toscani, Martina
AU - Tsokaros, Antonios
AU - Unal, Caner
AU - Vázquez-Aceves, Verónica
AU - Valiante, Rosa
AU - Putten, Maurice van
AU - Roestel, Jan van
AU - Vignali, Christian
AU - Volonteri, Marta
AU - Wu, Kinwah
AU - Younsi, Ziri
AU - Yu, Shenghua
AU - Zane, Silvia
AU - Zwick, Lorenz
AU - Antonini, Fabio
AU - Baibhav, Vishal
AU - Barausse, Enrico
AU - Rivera, Alexander Bonilla
AU - Branchesi, Marica
AU - Branduardi-Raymont, Graziella
AU - Burdge, Kevin
AU - Chakraborty, Srija
AU - Cuadra, Jorge
AU - Dage, Kristen
AU - Davis, Benjamin
AU - Mink, Selma E. de
AU - Decarli, Roberto
AU - Doneva, Daniela
AU - Escoffier, Stephanie
AU - Fragione, Giacomo
AU - Gandhi, Poshak
AU - Haardt, Francesco
AU - Lousto, Carlos O.
AU - Nissanke, Samaya
AU - Nordhaus, Jason
AU - O'Shaughnessy, Richard
AU - Zwart, Simon Portegies
AU - Pound, Adam
AU - Schussler, Fabian
AU - Sergijenko, Olga
AU - Spallicci, Alessandro
AU - Vernieri, Daniele
AU - Vigna-Gómez, Alejandro
AU - LISA
PY - 2022/3/11
Y1 - 2022/3/11
N2 - The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultracompact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
AB - The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultracompact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
KW - gr-qc
KW - astro-ph.CO
KW - astro-ph.GA
KW - astro-ph.HE
KW - astro-ph.IM
KW - astro-ph.SR
U2 - 10.1007/s41114-022-00041-y
DO - 10.1007/s41114-022-00041-y
M3 - Journal article
JO - Living Reviews in Relativity, Volume
JF - Living Reviews in Relativity, Volume
ER -