TY - JOUR
T1 - CAD increases the long noncoding RNA PUNISHER in small extracellular vesicles and regulates endothelial cell function via vesicular shuttling
AU - Hosen, Mohammed Rabiul
AU - Li, Qian
AU - Liu, Yangyang
AU - Zietzer, Andreas
AU - Maus, Katharina
AU - Goody, Philip
AU - Uchida, Shizuka
AU - Latz, Eicke
AU - Werner, Nikos
AU - Nickenig, Georg
AU - Jansen, Felix
N1 - © 2021 The Authors.
PY - 2021/9/3
Y1 - 2021/9/3
N2 - Long noncoding RNAs (lncRNAs) have emerged as biomarkers and regulators of cardiovascular disease. However, the expression pattern of circulating extracellular vesicle (EV)-incorporated lncRNAs in patients with coronary artery disease (CAD) is still poorly investigated. A human lncRNA array revealed that certain EV-lncRNAs are significantly dysregulated in CAD patients. Circulating small EVs (sEVs) from patients with (n = 30) or without (n = 30) CAD were used to quantify PUNISHER (also known as AGAP2-antisense RNA 1 [AS1]), GAS5, MALAT1, and H19 RNA levels. PUNISHER (p = 0.002) and GAS5 (p = 0.02) were significantly increased in patients with CAD, compared to non-CAD patients. Fluorescent labeling and quantitative real-time PCR of sEVs demonstrated that functional PUNISHER was transported into the recipient cells. Mechanistically, the RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK), interacts with PUNISHER, regulating its loading into sEVs. Knockdown of PUNISHER abrogated the EV-mediated effects on endothelial cell (EC) migration, proliferation, tube formation, and sprouting. Angiogenesis-related gene profiling showed that the expression of vascular endothelial growth factor A (VEGFA) RNA was significantly increased in EV recipient cells. Protein stability and RNA immunoprecipitation indicated that the PUNISHER-hnRNPK axis regulates the stability and binding of VEGFA mRNA to hnRNPK. Loss of PUNISHER in EVs abolished the EV-mediated promotion of VEGFA gene and protein expression. Intercellular transfer of EV-incorporated PUNISHER promotes a pro-angiogenic phenotype via a VEGFA-dependent mechanism.
AB - Long noncoding RNAs (lncRNAs) have emerged as biomarkers and regulators of cardiovascular disease. However, the expression pattern of circulating extracellular vesicle (EV)-incorporated lncRNAs in patients with coronary artery disease (CAD) is still poorly investigated. A human lncRNA array revealed that certain EV-lncRNAs are significantly dysregulated in CAD patients. Circulating small EVs (sEVs) from patients with (n = 30) or without (n = 30) CAD were used to quantify PUNISHER (also known as AGAP2-antisense RNA 1 [AS1]), GAS5, MALAT1, and H19 RNA levels. PUNISHER (p = 0.002) and GAS5 (p = 0.02) were significantly increased in patients with CAD, compared to non-CAD patients. Fluorescent labeling and quantitative real-time PCR of sEVs demonstrated that functional PUNISHER was transported into the recipient cells. Mechanistically, the RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK), interacts with PUNISHER, regulating its loading into sEVs. Knockdown of PUNISHER abrogated the EV-mediated effects on endothelial cell (EC) migration, proliferation, tube formation, and sprouting. Angiogenesis-related gene profiling showed that the expression of vascular endothelial growth factor A (VEGFA) RNA was significantly increased in EV recipient cells. Protein stability and RNA immunoprecipitation indicated that the PUNISHER-hnRNPK axis regulates the stability and binding of VEGFA mRNA to hnRNPK. Loss of PUNISHER in EVs abolished the EV-mediated promotion of VEGFA gene and protein expression. Intercellular transfer of EV-incorporated PUNISHER promotes a pro-angiogenic phenotype via a VEGFA-dependent mechanism.
KW - angiogenesis
KW - cardiovascular disease
KW - coronary artery disease
KW - extracellular vesicles
KW - long noncoding RNA
UR - http://www.scopus.com/inward/record.url?scp=85113510975&partnerID=8YFLogxK
U2 - 10.1016/j.omtn.2021.05.023
DO - 10.1016/j.omtn.2021.05.023
M3 - Journal article
C2 - 34484864
VL - 25
SP - 388
EP - 405
JO - Molecular Therapy - Nucleic Acids
JF - Molecular Therapy - Nucleic Acids
SN - 2162-2531
ER -