Changes in Facial Expression as Biometric: A Database and Benchmarks of Identification

Rain Eric Haamer, Kaustubh Kulkarni, Nasrin Imanpour, Mohammad Ahsanul Haque, Egils Avots, Michelle Breisch, Kamal Nasrollahi, Sergio Escalera Guerrero, Cagri Ozcinar, Xavier Baro, Ahmad Reza Naghsh-Nilchi, Thomas B. Moeslund, Gholamreza Anbarjafari

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

12 Citations (Scopus)
331 Downloads (Pure)

Abstract

Facial dynamics can be considered as unique signatures for discrimination between people. These have started to become important topic since many devices have the possibility of unlocking using face recognition or verification. In this work, we evaluate the efficacy of the transition frames of video in emotion as compared to the peak emotion frames for identification. For experiments with transition frames we extract features from each frame of the video from a fine-tuned VGG-Face Convolutional Neural Network (CNN) and geometric features from facial landmark points. To model the temporal context of the transition frames we train a Long-Short Term Memory (LSTM) on the geometric and the CNN features. Furthermore, we employ two fusion strategies: first, an early fusion, in which the geometric and the CNN features are stacked and fed to the LSTM. Second, a late fusion, in which the prediction of the LSTMs, trained
independently on the two features, are stacked and used with a Support Vector Machine (SVM). Experimental results show that the late fusion strategy gives the best results and the transition frames give better identification results as compared to the peak emotion frames.
Original languageEnglish
Title of host publication13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)
Number of pages8
PublisherIEEE
Publication date2018
Pages621-628
Article number8373891
ISBN (Print)978-1-5386-2336-7
ISBN (Electronic)978-1-5386-2335-0
DOIs
Publication statusPublished - 2018
EventIEEE Conf. on Automatic Face and Gesture Recognition Workshops - X'ian, China
Duration: 15 May 201819 May 2018
https://fg2018.cse.sc.edu

Conference

ConferenceIEEE Conf. on Automatic Face and Gesture Recognition Workshops
CountryChina
CityX'ian
Period15/05/201819/05/2018
Internet address

Keywords

  • Facial expression
  • biometric
  • database
  • benchmark
  • Deep Learning
  • CNN
  • LSTM
  • Multimodal
  • Spatio-temporal
  • SVM

Fingerprint Dive into the research topics of 'Changes in Facial Expression as Biometric: A Database and Benchmarks of Identification'. Together they form a unique fingerprint.

Cite this