TY - JOUR
T1 - Complex state variable- and disturbance observer-based current controllers for AC drives
T2 - An experimental comparison
AU - Dal, Mehmet
AU - Teodorescu, Remus
AU - Blaabjerg, Frede
PY - 2013
Y1 - 2013
N2 - In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path, extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance evaluation by simulation and by experiment for two different sampling rates. Several comparative results that verify the promising performance of the proposed control scheme are presented. The advantages of the proposed controller are an easy implementation and offering a unique solution for the variation of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller.
AB - In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path, extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance evaluation by simulation and by experiment for two different sampling rates. Several comparative results that verify the promising performance of the proposed control scheme are presented. The advantages of the proposed controller are an easy implementation and offering a unique solution for the variation of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller.
U2 - 10.1049/iet-pel.2012.0748
DO - 10.1049/iet-pel.2012.0748
M3 - Journal article
SN - 1755-4535
VL - 6
SP - 1792
EP - 1802
JO - IET Power Electronics
JF - IET Power Electronics
IS - 9
ER -