Coupled-Mode Flutter of Wind Turbines and its Suppression Using Torsional Viscous Damper

Zili Zhang, Bei Chen, Søren R. K. Nielsen

Research output: Contribution to journalConference article in JournalResearchpeer-review

2 Citations (Scopus)
325 Downloads (Pure)

Abstract

The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, resulting in rapid destructive failure or limit-cycle oscillations of the structural components. For pitch-regulated wind turbines, classical flutter is believed to become an increasingly important design consideration as blades become longer and slender. Flutter is an aeroelastic instability phenomenon where a torsional blade mode couples to a flap-wise bending mode, leading to a mutual rapid growth of the amplitude of the flap-wise and torsional motions. In this paper, a detailed finite element (FE) model for the wind turbine system is developed, with consistent modeling of the coupling between aerodynamic, elastic and inertial loads which have significant influence on the coupled-mode (flap-wise and torsional) vibration and stability. Further, elastic coupling between blade vibrations with tower and drivetrain motions are also considered, making this model capable for coupled-mode flutter analysis of a complete wind turbine system. The parameters of the model have been calibrated to the DTU 10MW wind turbine, and the critical flutter speed of the rotor is shown to be about 1.6 times its nominal rotational speed. A novel torsional viscous damper is then proposed to suppress torsional blade vibration and to enhance flutter stability of wind turbines.
Original languageEnglish
JournalProcedia Engineering
Volume199
Pages (from-to)3254–3259
ISSN1877-7058
DOIs
Publication statusPublished - 2017
EventThe X International Conference on Structural Dynamics, EURODYN 2017 - Sapienza University of Rome, Rom, Italy
Duration: 10 Sep 201713 Sep 2017
Conference number: 10

Conference

ConferenceThe X International Conference on Structural Dynamics, EURODYN 2017
Number10
LocationSapienza University of Rome
Country/TerritoryItaly
CityRom
Period10/09/201713/09/2017

Keywords

  • Wind turbines
  • Flutter
  • FE modeling
  • Torsional viscous damper

Fingerprint

Dive into the research topics of 'Coupled-Mode Flutter of Wind Turbines and its Suppression Using Torsional Viscous Damper'. Together they form a unique fingerprint.

Cite this