Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona

Johannes Langemeyer, Diego Wedgwood, Timon McPhearson, Francesc Baró, Anders Læsø Madsen, David N. Barton

Research output: Contribution to journalJournal articleResearchpeer-review

1 Citation (Scopus)
5 Downloads (Pure)

Abstract

As cities face increasing pressure from densification trends, green roofs represent a valuable source of ecosystem services for residents of compact metropolises where available green space is scarce. However, to date little research has been conducted regarding the holistic benefits of green roofs at a citywide scale, with local policymakers lacking practical guidance to inform expansion of green roofs coverage. The study addresses this issue by developing a spatial multi-criteria screening tool applied in Barcelona, Spain to determine: 1) where green roofs should be prioritized in Barcelona based on expert elicited demand for a wide range of ecosystem services and 2) what type of design of potential green roofs would optimize the ecosystem service provision. As inputs to the model, fifteen spatial indicators were selected as proxies for ecosystem service deficits and demands (thermal regulation, runoff control, habitat and pollination, food production, recreation, and social cohesion) along with five decision alternatives for green roof design (extensive, semi-intensive, intensive, naturalized, and allotment). These indicators and alternatives were analyzed probabilistically and spatially, then weighted according to feedback from local experts. Results of the assessment indicate that there is high demand across Barcelona for the ecosystem services that green roofs potentially might provide, particularly in dense residential neighborhoods and the industrial south. Experts identified habitat, pollination and thermal regulation as the most needed ES with runoff control and food production as the least demanded. Naturalized roofs generated the highest potential ecosystem service provision levels for 87.5% of rooftop area, apart from smaller areas of central Barcelona where intensive rooftops were identified as the preferable green roof design. Overall, the spatial model developed in this study offers a flexible screening based on spatial multi-criteria decision analysis that can be easily adjusted to guide municipal policy in other cities considering the effectiveness of green infrastructure as source of ecosystem services.
Original languageEnglish
Article number135487
JournalScience of the Total Environment
Volume707
ISSN0048-9697
DOIs
Publication statusPublished - 2020

Fingerprint

decision analysis
Decision theory
ecosystem service
Roofs
Ecosystems
roof
infrastructure
service provision
food production
Runoff
pollination
Screening
runoff
urban green
habitat
Densification
cohesion
Feedback

Keywords

  • Bayesian Belief Networks (BBN)
  • Cities
  • Green infrastructure (GI)
  • Multi-criteria decision analysis (MCDA)
  • Nature-based solutions (NBS)
  • Urban

Cite this

@article{9d27651570f24f7a8a6aa625e830844b,
title = "Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona",
abstract = "As cities face increasing pressure from densification trends, green roofs represent a valuable source of ecosystem services for residents of compact metropolises where available green space is scarce. However, to date little research has been conducted regarding the holistic benefits of green roofs at a citywide scale, with local policymakers lacking practical guidance to inform expansion of green roofs coverage. The study addresses this issue by developing a spatial multi-criteria screening tool applied in Barcelona, Spain to determine: 1) where green roofs should be prioritized in Barcelona based on expert elicited demand for a wide range of ecosystem services and 2) what type of design of potential green roofs would optimize the ecosystem service provision. As inputs to the model, fifteen spatial indicators were selected as proxies for ecosystem service deficits and demands (thermal regulation, runoff control, habitat and pollination, food production, recreation, and social cohesion) along with five decision alternatives for green roof design (extensive, semi-intensive, intensive, naturalized, and allotment). These indicators and alternatives were analyzed probabilistically and spatially, then weighted according to feedback from local experts. Results of the assessment indicate that there is high demand across Barcelona for the ecosystem services that green roofs potentially might provide, particularly in dense residential neighborhoods and the industrial south. Experts identified habitat, pollination and thermal regulation as the most needed ES with runoff control and food production as the least demanded. Naturalized roofs generated the highest potential ecosystem service provision levels for 87.5{\%} of rooftop area, apart from smaller areas of central Barcelona where intensive rooftops were identified as the preferable green roof design. Overall, the spatial model developed in this study offers a flexible screening based on spatial multi-criteria decision analysis that can be easily adjusted to guide municipal policy in other cities considering the effectiveness of green infrastructure as source of ecosystem services.",
keywords = "Bayesian Belief Networks (BBN), Cities, Green infrastructure (GI), Multi-criteria decision analysis (MCDA), Nature-based solutions (NBS), Urban",
author = "Johannes Langemeyer and Diego Wedgwood and Timon McPhearson and Francesc Bar{\'o} and Madsen, {Anders L{\ae}s{\o}} and Barton, {David N.}",
year = "2020",
doi = "10.1016/j.scitotenv.2019.135487",
language = "English",
volume = "707",
journal = "Science of the Total Environment",
issn = "0048-9697",
publisher = "Elsevier",

}

Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona. / Langemeyer, Johannes; Wedgwood, Diego; McPhearson, Timon; Baró, Francesc; Madsen, Anders Læsø; Barton, David N.

In: Science of the Total Environment, Vol. 707, 135487, 2020.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona

AU - Langemeyer, Johannes

AU - Wedgwood, Diego

AU - McPhearson, Timon

AU - Baró, Francesc

AU - Madsen, Anders Læsø

AU - Barton, David N.

PY - 2020

Y1 - 2020

N2 - As cities face increasing pressure from densification trends, green roofs represent a valuable source of ecosystem services for residents of compact metropolises where available green space is scarce. However, to date little research has been conducted regarding the holistic benefits of green roofs at a citywide scale, with local policymakers lacking practical guidance to inform expansion of green roofs coverage. The study addresses this issue by developing a spatial multi-criteria screening tool applied in Barcelona, Spain to determine: 1) where green roofs should be prioritized in Barcelona based on expert elicited demand for a wide range of ecosystem services and 2) what type of design of potential green roofs would optimize the ecosystem service provision. As inputs to the model, fifteen spatial indicators were selected as proxies for ecosystem service deficits and demands (thermal regulation, runoff control, habitat and pollination, food production, recreation, and social cohesion) along with five decision alternatives for green roof design (extensive, semi-intensive, intensive, naturalized, and allotment). These indicators and alternatives were analyzed probabilistically and spatially, then weighted according to feedback from local experts. Results of the assessment indicate that there is high demand across Barcelona for the ecosystem services that green roofs potentially might provide, particularly in dense residential neighborhoods and the industrial south. Experts identified habitat, pollination and thermal regulation as the most needed ES with runoff control and food production as the least demanded. Naturalized roofs generated the highest potential ecosystem service provision levels for 87.5% of rooftop area, apart from smaller areas of central Barcelona where intensive rooftops were identified as the preferable green roof design. Overall, the spatial model developed in this study offers a flexible screening based on spatial multi-criteria decision analysis that can be easily adjusted to guide municipal policy in other cities considering the effectiveness of green infrastructure as source of ecosystem services.

AB - As cities face increasing pressure from densification trends, green roofs represent a valuable source of ecosystem services for residents of compact metropolises where available green space is scarce. However, to date little research has been conducted regarding the holistic benefits of green roofs at a citywide scale, with local policymakers lacking practical guidance to inform expansion of green roofs coverage. The study addresses this issue by developing a spatial multi-criteria screening tool applied in Barcelona, Spain to determine: 1) where green roofs should be prioritized in Barcelona based on expert elicited demand for a wide range of ecosystem services and 2) what type of design of potential green roofs would optimize the ecosystem service provision. As inputs to the model, fifteen spatial indicators were selected as proxies for ecosystem service deficits and demands (thermal regulation, runoff control, habitat and pollination, food production, recreation, and social cohesion) along with five decision alternatives for green roof design (extensive, semi-intensive, intensive, naturalized, and allotment). These indicators and alternatives were analyzed probabilistically and spatially, then weighted according to feedback from local experts. Results of the assessment indicate that there is high demand across Barcelona for the ecosystem services that green roofs potentially might provide, particularly in dense residential neighborhoods and the industrial south. Experts identified habitat, pollination and thermal regulation as the most needed ES with runoff control and food production as the least demanded. Naturalized roofs generated the highest potential ecosystem service provision levels for 87.5% of rooftop area, apart from smaller areas of central Barcelona where intensive rooftops were identified as the preferable green roof design. Overall, the spatial model developed in this study offers a flexible screening based on spatial multi-criteria decision analysis that can be easily adjusted to guide municipal policy in other cities considering the effectiveness of green infrastructure as source of ecosystem services.

KW - Bayesian Belief Networks (BBN)

KW - Cities

KW - Green infrastructure (GI)

KW - Multi-criteria decision analysis (MCDA)

KW - Nature-based solutions (NBS)

KW - Urban

U2 - 10.1016/j.scitotenv.2019.135487

DO - 10.1016/j.scitotenv.2019.135487

M3 - Journal article

VL - 707

JO - Science of the Total Environment

JF - Science of the Total Environment

SN - 0048-9697

M1 - 135487

ER -