Abstract
To achieve commercial application of organic solar cells (OSCs), it is necessary to reduce material costs and improve device efficiency. This paper reports on the utilization of a multifunctional building block, namely 3-cyanoesterthiophene, which exhibits simple structure and accessibility of synthetic for cost-effective and high-performance polymer donors (PDs). Meanwhile, ternary and terpolymerization strategies have been studied. Two similar PDs, PBTCl0-TCA and PBTCl100-TCA, are synthesized, and the devices exhibit less-than-satisfactory efficiency of 13.21% and 11.53% due to mismatching energy level and imperfect morphology. The two PDs with comparable structures and commendable compatibility easily form alloy-like phase in active layer, which can effectively boost the efficiency of ternary devices to 14.17% with retained high JSC and significant improved open-circuit voltage (VOC) and fill factor (FF). Encouraged by the ternary blending phenomenon, a polymer donor (PBTCl50-TCA) with same ratio by random terpolymerization is designed. And over 17% efficiency binary OSCs using terpolymerization donor are demonstrated. The synergies of incorporation of the cyanoester-group and terpolymer endow the developed PDs with deep-lying energy levels, face-on orientation, thermodynamic miscibility with the prevailing nonfullerene acceptor and appropriate polymer crystallinity. The findings study provide valuable insights and support for the advancement of cost-effective and high-performance PDs.
Original language | English |
---|---|
Article number | 2313850 |
Journal | Advanced Functional Materials |
Volume | 34 |
Issue number | 19 |
ISSN | 1616-301X |
DOIs | |
Publication status | Published - 10 May 2024 |
Bibliographical note
Publisher Copyright:© 2024 Wiley-VCH GmbH.
Keywords
- cyanoesterthiophene
- high-performance organic solar cells
- low-cost
- polymer donors
- random terpolymerization