Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal Visual Modalities

Mohammad Ahsanul Haque, Ruben B. Bautista, Fatemeh Noroozi, Kaustubh Kulkarni, Christian B. Laursen, Ramin Irani, Marco Bellantonio, Sergio Escalera, Gholamreza Anbarjafari, Kamal Nasrollahi, Ole Kæseler Andersen, Erika Geraldina Spaich, Thomas B. Moeslund

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

55 Citations (Scopus)
1126 Downloads (Pure)

Abstract

Pain is a symptom of many disorders associated with actual or potential tissue damage in human body. Managing pain is not only a duty but also highly cost prone. The most primitive state of pain management is the assessment of pain. Traditionally it was accomplished by self-report or visual inspection by experts. However, automatic pain assessment systems from facial videos are also rapidly evolving due to the need of managing pain in a robust and cost effective way. Among different challenges of automatic pain assessment from facial video data two issues are increasingly prevalent: first, exploiting both spatial and temporal information of the face to assess pain level, and second, incorporating multiple visual modalities to capture complementary face information related to pain. Most works in the literature focus on merely exploiting spatial information on chromatic (RGB) video data on shallow learning scenarios. However, employing deep learning techniques for spatio-temporal analysis considering Depth (D) and Thermal (T) along with RGB has high potential in this area. In this paper, we present the first state-of-the-art publicly available database, 'Multimodal Intensity Pain (MIntPAIN)' database, for RGBDT pain level recognition in sequences. We provide a first baseline results including 5 pain levels recognition by analyzing independent visual modalities and their fusion with CNN and LSTM models. From the experimental evaluation we observe that fusion of modalities helps to enhance recognition performance of pain levels in comparison to isolated ones. In particular, the combination of RGB, D, and T in an early fusion fashion achieved the best recognition rate.
Original languageEnglish
Title of host publicationProceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018
Number of pages8
PublisherIEEE
Publication date5 Jun 2018
Pages250-257
ISBN (Electronic)978-1-5386-2335-0
DOIs
Publication statusPublished - 5 Jun 2018
Event13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018 - Xi'an, China
Duration: 15 May 201819 May 2018

Conference

Conference13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018
Country/TerritoryChina
CityXi'an
Period15/05/201819/05/2018

Bibliographical note

DNRF121

Keywords

  • Database
  • Deep Learning
  • Depth
  • LSTM
  • Multimodal
  • Pain
  • RGB
  • RGBDT
  • Thermal
  • Video
  • Vision
  • Visual

Fingerprint

Dive into the research topics of 'Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal Visual Modalities'. Together they form a unique fingerprint.

Cite this