DISTRIBUTED ADAPTIVE NORM ESTIMATION FOR BLIND SYSTEM IDENTIFICATION IN WIRELESS SENSOR NETWORKS

Matthias Blochberger, Filip Elvander, Randall Ali, Jan Østergaard, Jesper Jensen, Marc Moonen, Toon van Waterschoot

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

Abstract

Distributed signal-processing algorithms in (wireless) sensor net- works often aim to decentralize processing tasks to reduce communication cost and computational complexity or avoid reliance on a single device (i.e., fusion center) for processing. In this contribu- tion, we extend a distributed adaptive algorithm for blind system identification that relies on the estimation of a stacked network-wide consensus vector at each node, the computation of which requires either broadcasting or relaying of node-specific values (i.e., local vector norms) to all other nodes. The extended algorithm employs a distributed-averaging-based scheme to estimate the network-wide consensus norm value by only using the local vector norm provided by neighboring sensor nodes. We introduce an adaptive mixing fac- tor between instantaneous and recursive estimates of these norms for adaptivity in a time-varying system. Simulation results show that the extension provides estimation results close to the optimal fully- connected-network or broadcasting case while reducing inter-node transmission significantly.
Original languageEnglish
Title of host publicationIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
PublisherIEEE Signal Processing Society
Publication dateJun 2023
Publication statusPublished - Jun 2023

Fingerprint

Dive into the research topics of 'DISTRIBUTED ADAPTIVE NORM ESTIMATION FOR BLIND SYSTEM IDENTIFICATION IN WIRELESS SENSOR NETWORKS'. Together they form a unique fingerprint.

Cite this