Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell

Jesper Lebæk Jespersen, Erik Schaltz, Søren Knudsen Kær

Research output: Contribution to journalJournal articleResearchpeer-review

88 Citations (Scopus)


This work constitutes detailed EIS (Electrochemical Impedance Spectroscopy) measurements on a PBIbased HT-PEM unit cell. By means of EIS the fuel cell is characterized in several modes of operation by varying the current density, temperature and the stoichiometry of the reactant gases. Using Equivalent Circuit (EC) modeling key parameters, such as the membrane resistance, charge transfer resistance and gas transfer resistance are identified, however the physical interpretation of the parameters derived from EC's are doubtful as discussed in this paper. The EC model proposed, which is a modified Randles circuit, provides a reasonably good fit at all the conditions tested. The measurements reveal that the cell temperature is an important parameter, which influences the cell performance significantly, especially the charge transfer resistance proved to be very temperature dependent. The transport of oxygen to the Oxygen Reduction Reaction (ORR) likewise has a substantial effect on the impedance spectra, results showed that the gas transfer resistance has an exponential-like dependency on the air stoichiometry. Based on the present results and results found in recent publications it is still not clear what exactly causes the distinctive low frequency loop occurring at oxygen starvation. Contrary to the oxygen transport, the transport of hydrogen to the Hydrogen Oxidation Reaction (HOR), in the stoichiometry range investigated in this study, shows no measurable change in the impedance data. Generally, this work is expected to provide a basis for future development of impedance-based fuel cell diagnostic systems for HT-PEM fuel cell.
Original languageEnglish
JournalJournal of Power Sources
Issue number2
Pages (from-to)289-296
Publication statusPublished - 2009


  • EIS
  • HT-PEM
  • Fuel cell
  • Electrochemical characterization


Dive into the research topics of 'Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell'. Together they form a unique fingerprint.

Cite this