EMG-versus EEG-Triggered Electrical Stimulation for Inducing Corticospinal Plasticity

M. Jochumsen, M. S. Navid, U. Rashid, H. Haavik, I. K. Niazi

Research output: Contribution to journalJournal articleResearchpeer-review

21 Citations (Scopus)
236 Downloads (Pure)

Abstract

Brain-computer interfaces have been proposed for stroke rehabilitation. Motor cortical activity derived from the electroencephalography (EEG) can trigger external devices that provide congruent sensory feedback. However, many stroke patients regain residual muscle (EMG: electromyography) control due to spontaneous recovery and rehabilitation; therefore, EEG may not be necessary as a control signal. In this paper, a direct comparison was made between the induction of corticospinal plasticity using either EEG- or EMG-controlled electrical nerve stimulation. Twenty healthy participants participated in two intervention sessions consisting of EEG- and EMG-controlled electrical stimulation. The sessions consisted of 50 pairings between foot dorsiflexion movements (decoded through either EEG or EMG) and electrical stimulation of the common peroneal nerve. Before, immediately after and 30 minutes after the intervention, 15 motor evoked potentials (MEPs) were elicited in tibialis anterior through transcranial magnetic stimulation. Increased MEPs were observed immediately after (62 ± 26%, 73 ± 27% for EEG- and EMG-triggered electrical stimulation, respectively) and 30 minutes after each of the two interventions (79 ± 26% and 72 ± 27%) compared to the pre-intervention measurement. There was no difference between the interventions. Both EEG- and EMG-controlled electrical stimulation can induce corticospinal plasticity which suggests that stroke patients with residual EMG can use that modality instead of EEG to trigger stimulation.

Original languageEnglish
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume27
Issue number9
Pages (from-to)1901-1908
Number of pages8
ISSN1534-4320
DOIs
Publication statusPublished - 1 Sept 2019

Fingerprint

Dive into the research topics of 'EMG-versus EEG-Triggered Electrical Stimulation for Inducing Corticospinal Plasticity'. Together they form a unique fingerprint.

Cite this