Abstract

The main objectives of this study were to expand the moving-axis joint model concept to the patellofemoral joint and evaluate the patellar motion against experimental patellofemoral kinematics. The experimental data was obtained through 2D-to-3D bone reconstruction of EOS images and segmented MRI data utilizing an iterative closest point optimization technique. Six knee model variations were developed using the AnyBody Modeling System and subject-specific bone geometries. These models consisted of various combinations of tibiofemoral (hinge, moving-axis, and interpolated) and patellofemoral (hinge and moving-axis) joint types. The newly introduced interpolated tibiofemoral joint is calibrated from the five EOS quasi-static lunge positions. The patellofemoral axis of the hinge model was defined by performing surface fits to the patellofemoral contact area; and the moving-axis model was defined based upon the position of the patellofemoral joint at 0° and 90° tibiofemoral-flexion. In between these angles, the patellofemoral axis moved linearly as a function of tibiofemoral-flexion, while outside these angles, the axis remained fixed. When using a moving-axis tibiofemoral joint, a hinge patellofemoral joint offers (−5.12 ± 1.23 mm, 5.81 ± 0.97 mm, 14.98 ± 2.30°, −4.35 ± 1.95°) mean differences (compared to EOS) while a moving-axis patellofemoral model provides (−2.69 ± 1.04 mm, 1.13 ± 0.80 mm, 12.63 ± 2.03°, 1.74 ± 1.46°) in terms of lateral-shift, superior translation, patellofemoral-flexion, and patellar-rotation, respectively. Furthermore, the model predictive capabilities increased as a direct result of adding more calibrated positions to the tibiofemoral model (hinge-1, moving-axis-2, and interpolated-5). Overall, a novel subject-specific moving-axis patellofemoral model has been established; that produces realistic patellar motion and is computationally fast enough for clinical applications.

Original languageEnglish
JournalMedical Engineering & Physics
Volume73
Pages (from-to)85-91
Number of pages7
ISSN1350-4533
DOIs
Publication statusPublished - Nov 2019

Fingerprint

Patellofemoral Joint
Biomechanical Phenomena
Kinematics
Joints
Hinges
Bone and Bones
Computer-Assisted Image Processing
Knee
Bone
Magnetic resonance imaging

Keywords

  • EOS imaging
  • Magnetic resonance imaging
  • Musculoskeletal knee model
  • Patellofemoral joint
  • Secondary joint kinematics

Cite this

@article{61761de961ac4b8ba9e7f937a5e9ee48,
title = "Evaluation of predicted patellofemoral joint kinematics with a moving-axis joint model",
abstract = "The main objectives of this study were to expand the moving-axis joint model concept to the patellofemoral joint and evaluate the patellar motion against experimental patellofemoral kinematics. The experimental data was obtained through 2D-to-3D bone reconstruction of EOS images and segmented MRI data utilizing an iterative closest point optimization technique. Six knee model variations were developed using the AnyBody Modeling System and subject-specific bone geometries. These models consisted of various combinations of tibiofemoral (hinge, moving-axis, and interpolated) and patellofemoral (hinge and moving-axis) joint types. The newly introduced interpolated tibiofemoral joint is calibrated from the five EOS quasi-static lunge positions. The patellofemoral axis of the hinge model was defined by performing surface fits to the patellofemoral contact area; and the moving-axis model was defined based upon the position of the patellofemoral joint at 0° and 90° tibiofemoral-flexion. In between these angles, the patellofemoral axis moved linearly as a function of tibiofemoral-flexion, while outside these angles, the axis remained fixed. When using a moving-axis tibiofemoral joint, a hinge patellofemoral joint offers (−5.12 ± 1.23 mm, 5.81 ± 0.97 mm, 14.98 ± 2.30°, −4.35 ± 1.95°) mean differences (compared to EOS) while a moving-axis patellofemoral model provides (−2.69 ± 1.04 mm, 1.13 ± 0.80 mm, 12.63 ± 2.03°, 1.74 ± 1.46°) in terms of lateral-shift, superior translation, patellofemoral-flexion, and patellar-rotation, respectively. Furthermore, the model predictive capabilities increased as a direct result of adding more calibrated positions to the tibiofemoral model (hinge-1, moving-axis-2, and interpolated-5). Overall, a novel subject-specific moving-axis patellofemoral model has been established; that produces realistic patellar motion and is computationally fast enough for clinical applications.",
keywords = "EOS imaging, Magnetic resonance imaging, Musculoskeletal knee model, Patellofemoral joint, Secondary joint kinematics",
author = "Dzialo, {Christine Mary} and Pedersen, {Peter Heide} and Jensen, {Kenneth Krogh} and {de Zee}, Mark and Andersen, {Michael Skipper}",
year = "2019",
month = "11",
doi = "10.1016/j.medengphy.2019.08.001",
language = "English",
volume = "73",
pages = "85--91",
journal = "Medical Engineering & Physics",
issn = "1350-4533",
publisher = "Pergamon Press",

}

Evaluation of predicted patellofemoral joint kinematics with a moving-axis joint model. / Dzialo, Christine Mary; Pedersen, Peter Heide; Jensen, Kenneth Krogh ; de Zee, Mark; Andersen, Michael Skipper.

In: Medical Engineering & Physics, Vol. 73, 11.2019, p. 85-91.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Evaluation of predicted patellofemoral joint kinematics with a moving-axis joint model

AU - Dzialo, Christine Mary

AU - Pedersen, Peter Heide

AU - Jensen, Kenneth Krogh

AU - de Zee, Mark

AU - Andersen, Michael Skipper

PY - 2019/11

Y1 - 2019/11

N2 - The main objectives of this study were to expand the moving-axis joint model concept to the patellofemoral joint and evaluate the patellar motion against experimental patellofemoral kinematics. The experimental data was obtained through 2D-to-3D bone reconstruction of EOS images and segmented MRI data utilizing an iterative closest point optimization technique. Six knee model variations were developed using the AnyBody Modeling System and subject-specific bone geometries. These models consisted of various combinations of tibiofemoral (hinge, moving-axis, and interpolated) and patellofemoral (hinge and moving-axis) joint types. The newly introduced interpolated tibiofemoral joint is calibrated from the five EOS quasi-static lunge positions. The patellofemoral axis of the hinge model was defined by performing surface fits to the patellofemoral contact area; and the moving-axis model was defined based upon the position of the patellofemoral joint at 0° and 90° tibiofemoral-flexion. In between these angles, the patellofemoral axis moved linearly as a function of tibiofemoral-flexion, while outside these angles, the axis remained fixed. When using a moving-axis tibiofemoral joint, a hinge patellofemoral joint offers (−5.12 ± 1.23 mm, 5.81 ± 0.97 mm, 14.98 ± 2.30°, −4.35 ± 1.95°) mean differences (compared to EOS) while a moving-axis patellofemoral model provides (−2.69 ± 1.04 mm, 1.13 ± 0.80 mm, 12.63 ± 2.03°, 1.74 ± 1.46°) in terms of lateral-shift, superior translation, patellofemoral-flexion, and patellar-rotation, respectively. Furthermore, the model predictive capabilities increased as a direct result of adding more calibrated positions to the tibiofemoral model (hinge-1, moving-axis-2, and interpolated-5). Overall, a novel subject-specific moving-axis patellofemoral model has been established; that produces realistic patellar motion and is computationally fast enough for clinical applications.

AB - The main objectives of this study were to expand the moving-axis joint model concept to the patellofemoral joint and evaluate the patellar motion against experimental patellofemoral kinematics. The experimental data was obtained through 2D-to-3D bone reconstruction of EOS images and segmented MRI data utilizing an iterative closest point optimization technique. Six knee model variations were developed using the AnyBody Modeling System and subject-specific bone geometries. These models consisted of various combinations of tibiofemoral (hinge, moving-axis, and interpolated) and patellofemoral (hinge and moving-axis) joint types. The newly introduced interpolated tibiofemoral joint is calibrated from the five EOS quasi-static lunge positions. The patellofemoral axis of the hinge model was defined by performing surface fits to the patellofemoral contact area; and the moving-axis model was defined based upon the position of the patellofemoral joint at 0° and 90° tibiofemoral-flexion. In between these angles, the patellofemoral axis moved linearly as a function of tibiofemoral-flexion, while outside these angles, the axis remained fixed. When using a moving-axis tibiofemoral joint, a hinge patellofemoral joint offers (−5.12 ± 1.23 mm, 5.81 ± 0.97 mm, 14.98 ± 2.30°, −4.35 ± 1.95°) mean differences (compared to EOS) while a moving-axis patellofemoral model provides (−2.69 ± 1.04 mm, 1.13 ± 0.80 mm, 12.63 ± 2.03°, 1.74 ± 1.46°) in terms of lateral-shift, superior translation, patellofemoral-flexion, and patellar-rotation, respectively. Furthermore, the model predictive capabilities increased as a direct result of adding more calibrated positions to the tibiofemoral model (hinge-1, moving-axis-2, and interpolated-5). Overall, a novel subject-specific moving-axis patellofemoral model has been established; that produces realistic patellar motion and is computationally fast enough for clinical applications.

KW - EOS imaging

KW - Magnetic resonance imaging

KW - Musculoskeletal knee model

KW - Patellofemoral joint

KW - Secondary joint kinematics

UR - http://www.scopus.com/inward/record.url?scp=85071400570&partnerID=8YFLogxK

U2 - 10.1016/j.medengphy.2019.08.001

DO - 10.1016/j.medengphy.2019.08.001

M3 - Journal article

VL - 73

SP - 85

EP - 91

JO - Medical Engineering & Physics

JF - Medical Engineering & Physics

SN - 1350-4533

ER -